Preliminary Design of a 90m Ro-Pax Ferry

By:

Lukas Bridgeman, Thomas Giannuzzi, Jared Smith, James Sullivan

Suny Maritime College

Advisor:

Professor Charles J. Munsch

Student Certification

State University of New York Maritime College Dr. James A. Lisnyk Student Ship Design Competition Student Design Team Members

The following students were part of the design team:

Student Name	Signature
Lukas Bridgeman	Jula Bidgeman
Thomas Giannuzzi	
Jared Smith	Nr.
James Sullivan	James Salltway

State University of New York Maritime College

Dr. James A. Lisnyk Student Ship Design Competition

Faculty Advisor Statement

By this statement, I certify that the work done for this design competition was completed by the student team members.

A DELAS SNAME # 3232200

Professor Charles J. Munsch

Table of Contents

١.	List of Figures6
II.	List of Tables7
III.	Glossary and Abbreviations8
IV.	Summary9
V.	Concept and Owner's Requirements:
Α.	Owner's Requirements:10
В.	Sample Route
VI.	Definition and sizing12
Α.	Definition12
В.	Sizing19
VII.	Hull Forms and Curves of Form20
Α.	Initial Form Decisions20
В.	Specific Hull Shape Considerations21
C.	Final Hull Fairing27
VIII.	Area and Volumes28
IX.	General Arrangement
Α.	Tank Top Deck
В.	Machinery Deck
C.	Main Deck
D.	Passenger Deck
E.	Bridge Deck
Х.	Structural Design
A.	ABS Requirements and Scantling Sizing31
В.	Midship Section Strength Assessment35
XI.	Resistance, Speed, and Initial Power Analysis36
A.	Initial Determination of Resistance36
В.	CFD Analysis
C.	Power Analysis
XII.	Propulsion plant selection
A.	Power Plant Tradeoffs
B.	Specified Powerplant Analysis40
XIII.	EEDI Analysis
XIV.	Electric Load Analysis

XV.	Major mechanical systems43
Α.	Hull Equipment
В.	HVAC
C.	Pumps
D.	Electric Generators
E.	Anchor and Windlass
XVI.	Mission specific equipment and outfitting46
Α.	Outfitting
В.	Roro Ramp
XVII.	Weight Estimates
XVIII.	Trim and Intact Stability Analysis49
Α.	IMO 2008 IS Code - MSC.267(85)
В.	USCG 46 CFR Subchapter S51
C.	Transport Canada TP 730151
D.	Results
XIX.	Damage Stability Analysis53
Α.	Subdivision Requirements54
В.	Probabilistic Damage Stability
C.	Floodable Length Curves55
XX.	Endurance and Bunkering56
Α.	Fuel
В.	Lube Oil
XXI.	Seakeeping Analysis
Α.	Sea State
В.	Criteria
C.	Model Results
D.	Conclusions61
XXII.	Crew manning estimates61
XXIII.	Cost, Rates and Profit Analysis62
Α.	Capital Expenditure
В.	Operating Expenses
C.	Rates
D.	Profit Analysis65
XXIV.	Passenger Risk Assessment66
Α.	Passenger and Ship Safety

В.	Structure and Weight Estimate	67
C.	Powering and Resistance	67
D.	Port Facilities and Roro Loading	68
E.	Economic Considerations	68
F.	Oil and Fuel Spills	68
XXV.	Works Cited	69
Apper	ndix A: General Arrangement and Lines Plan	73
Apper	ndix B: Initial Design: Vessel DWT Regressions	80
Apper	ndix C: Economic Parametric Models	81
1.	Design Inputs/Economic Outputs	81
2.	Capital Expenses	82
3.	Annual Operating Expenses	84
4.	Income Projections	88
••		
Apper	ndix D: Structural Calculations	90
Apper 1.	ndix D: Structural Calculations Design Pressures	90 90
Apper 1. 2.	ndix D: Structural Calculations Design Pressures Plating Thicknesses	90 90 91
Apper 1. 2. 3.	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing	90 90 91 92
Apper 1. 2. 3. 4.	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers	90 90 91 92 93
Apper 1. 2. 3. 4. 5.	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders	90 90 91 92 93 94
Apper 1. 2. 3. 4. 5. 6.	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders Shell Plating	90 90 91 92 93 94 96
Apper 1. 2. 3. 4. 5. 6. 7.	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders Shell Plating Ground Tackle	90 90 91 92 93 93 94 96 99
Apper 1. 2. 3. 4. 5. 6. 7. Apper	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders Shell Plating Ground Tackle ndix E: Areas and Volumes Summary	90 90 91 92 93 94 96 99 100
Apper 1. 2. 3. 4. 5. 6. 7. Apper Apper	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders Shell Plating Ground Tackle ndix E: Areas and Volumes Summary ndix F: Intact Stability Load Conditions and Results	90 90 91 92 93 94 96 99 100 103
Apper 1. 2. 3. 4. 5. 6. 7. Apper Apper	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders Shell Plating Ground Tackle ndix E: Areas and Volumes Summary ndix F: Intact Stability Load Conditions and Results ndix G: Probabilistic Damage Stability.	90 90 91 92 93 93 94 96 99 100 103 116
Apper 1. 2. 3. 4. 5. 6. 7. Apper Apper Apper	ndix D: Structural Calculations Design Pressures Plating Thicknesses Shell Framing Web Frames & Stringers Deck Beams & Girders Shell Plating Ground Tackle ndix E: Areas and Volumes Summary ndix F: Intact Stability Load Conditions and Results ndix G: Probabilistic Damage Stability ndix H: NavCad Powering Results	90 90 91 92 93 94 96 99 100 103 116 140

I. List of Figures

Figure 1: Rendering of Proposed Ferry Design9
Figure 2: Map of Black Ball Ferry Route11
Figure 3: Length Regression from Car Load – Monohull13
Figure 4: Power Regression from Length - Monohull14
Figure 5: Length Regression from Car Capacity - Catamaran
Figure 6: Power Regression from Length - Catamaran16
Figure 7: Displacement Regression from Car Capacity17
Figure 8: Residuary Resistance for b Series Models; S/L = 0.223
Figure 9: Residuary Resistance for Models 5a, 5b, and 5c; S/L = 0.2 [5]24
Figure 10: Residuary Resistance for Models 6a, 6b, and 6c; S/L = 0.2 [5]25
Figure 11: Residuary Resistance for Model 5c, Varying S/L Ratio
Figure 12: Underside of Hull Model with Net and Longitudinal Curvature
Figure 13: Front Elevation of Hull with Net and Transverse Curvature
Figure 14: Axonometric View of Hull with Net and Longitudinal Curvature28
Figure 15: Midship Section
Figure 16: Early Model CFD Analysis at 20 kts
Figure 17: CFD Calculated Resistance Coefficients
Figure 18: Bare Hull Resistance VS Effective Power
Figure 19:IMO Energy Efficiency Design Index Formula41
Figure 20: Exhaust Heat Recovery System
Figure 21: Typical Absorption Marine Chiller
Figure 22: Marhy PTO Shaft Generator System
Figure 23:Example Hydraulic Lift RoRo Ramp47
Figure 24: IMO IS 2008 Severe Wind and Rolling Criterion [23]50
Figure 25: Graph of Limiting KG vs Displacement53
Figure 26: GHS Model
Figure 27: Probabilistic Damage Stability Analysis Results
Figure 28: Floodable Length Curves56
Figure 29: Mean and Standard Deviation Plot of Significant Wave Height [28]58
Figure 30: Mean Standard Deviation for Average Wave Period [29]59
Figure 31: MSI Limits and Calculated Values at 20 knots in a Rear Quartering Sea
Figure 32: Breakdown of Capital Expenses63
Figure 33: Annual Operating Expenses65
Figure 34: Payoff Period and Capacity Utilization

Figure 35: DWT as Function of Car Capacity - Monohull	80
Figure 36: DWT as Function of Car Capacity - Catamaran	80

II. List of Tables

Table 1: Principal Particulars 9
Table 2: Comparable Monohull Ferry Vessels in Service 12
Table 3: Table of Comparable Catamaran Ferries in Service
Table 4: Typical Vehicle Size 19
Table 5: Guiding Principal Particulars, Catamaran
Table 6: Parameters of Catamaran Ferry Hull for Comparison with Molland Values
Table 7: Notation and Main Parameters of Molland Models [5]
Table 8: Summary of Areas and Volumes 29
Table 9: ABS Required Structural Scantlings 32
Table 10: ABS Required Plating Thicknesses 33
Table 11: ABS Required Bulkhead Stiffeners 34
Table 12: Midship Strength Analysis Results 35
Table 13:Power to Weight Ratio Comparison 39
Table 14:Comparison of High-Speed Marine Diesel Engines 40
Table 15: Specific Powerplant Analysis40
Table 16: Electric Load Analysis42
Table 17: Itemized Weight Estimate
Table 18: Weight Estimate Ratio Comparisons 48
Table 19: Intact Stability Results 52
Table 20: Limiting KG at Selected Displacements 53
Table 21:Fuel Bunkering Periods56
Table 22:Lube and Waste Oil Periods57
Table 23: Maximum Root Mean Square Acceleration Level 59
Table 24: Maximum RMS Accelerations at 20 knots for Sea Stage 6
Table 25: Crew and Service Staff62
Table 26: Length, Deadweight Tonnage and Build Cost of Comparable Catamarans63

	.	Glossary and Abbreviations
ABS		American Bureau of Shipping
Cf		Coefficient of Frictional Resistance
CFD		Computational Fluid Dynamics
CFR		Code of Federal Regulations
Cr		Coefficient of Residuary Resistance
Demi-hull		One individual hull of a catamaran
DWT		Deadweight Tonnage
EEDI		Environmental Efficiency Design Index
FEA		Finite Element Analysis
Fn		Froude Number
IMO		International Maritime Organization
MDO		Marine Diesel Oil
PB		Brake Power
PE		Effective Power
RoPax		Roll-on/Roll-off passenger and vehicle carrying vessel
S		Separation between catamaran demi-hull centerlines
SOLAS		Safety of Life at Sea
SWATH		Small Waterplane Area, Twin Hull
USCG		U.S. Coast Guard

IV. Summary

The following report outlines the preliminary ship design for a RoPax ferry carrying 100 cars (500 lane-meters) and 650 passengers on a voyage short enough to not require staterooms.

Length Overall (m)	92
Waterline Length Between Perpendiculars (m)	90
Beam (m)	25.57
Draft (m)	3
Depth (m)	10
Displacement (t)	2284
Deadweight (t)	750
Service Speed (knots)	18
Installed Power (kW)	5760
Block Coefficient (per demi-hull)	0.59
Vehicle Capacity (lane-meters)	525
Passenger Capacity	650
Crew	16

Table 1: Principal Particulars

Figure 1: Rendering of Proposed Ferry Design

V. Concept and Owner's Requirements:

A. Owner's Requirements:

The design task was for a RoPax ferry to carry 100 cars and 650 passengers on a passage short enough to preclude the need for passenger staterooms. A design adaptable for sale into different ferry markets was an added requirement. For the first pass around the design spiral, the team designed a monohull ferry with dual fuel (diesel/methanol) hybrid propulsion. This design could comply with International Maritime Organization (IMO) Environmental Efficiency Design Index (EEDI) Phase III standards only when using methanol fuel derived from "green" sources. Given the limited availability of this fuel and the desire for a design adaptable to various routes, it was decided to examine other hull form concepts that would result in lower power requirements and carbon emissions while utilizing commonly available marine diesel oil (MDO).

Low speed, low displacement catamaran ferry designs offer a higher deadweight tonnage to displacement ratio than monohull ferries, while still retaining superior stability characteristics. These designs offer shallow draft and potentially lesser displacements, resulting in lower hull resistance.

Most of the catamaran ferries currently in service operate at speeds greater than 30 knots. These vessels create significant wave making resistance and thus have large propulsion power plants (>10,000 kW), consuming large amounts of fuel.

The medium speed catamaran design reduces resistance through drastically reduced wave making resistance and reduced structural weight without adding resistance from the slamming forces inherent in high-speed operations. Reduced structural weight produces reduced draft and allows the deadweight to lightship ratio to increase further.

B. Sample Route

While an adaptable design is desirable, to comply with the requirements of this competition the route of the MV Coho has been chosen as a necessary framework for endurance, seakeeping and economic analysis. This is a private ferry operator which limits the availability of accounting data which could be derived from government operated or

subsidized ferry services. The rates charged reflect the real costs of operating on this route and will facilitate cost analysis.

The MV Coho, owned and operated by the Black Ball Ferry Line, carries cars, trucks, and passengers 22.6 nautical miles across the Strait of Juan de Fuca between Port Angeles, Washington and Victoria, British Columbia. It can transport a maximum of 110 cars and 1000 passengers making 2-4 round trips per day, depending on the season. She is a steel monohull vessel powered by two 1,900 kW diesel engines. At a service speed of 15 knots, MV Coho can complete a crossing in 90 minutes.

Launched in 1959, replacement of this aging monohull ferry can bring this ferry route into compliance with the IMO Energy Efficiency Design Index requirements. Lower fuel use and carbon emission can be achieved along with higher service speeds, resulting in more profit for the ferry operator.

The Black Ball Line, founded in 1818 in New York, was the original trans-Atlantic service that sailed on a fixed schedule. Subsequently the Peabody family founded the Puget Sound Navigation Company to ferry passengers and cargo. Most of the routes and facilities were sold to the State of Washington and became the Washington State Ferry System. This single route along with the Black Ball name and distinctive flag were retained.

Figure 2: Map of Black Ball Ferry Route

The route takes the ferry 22.6 miles across the Strait of Juan de Fuca from Port Angeles, Washington to Victoria, British Columbia. The ship loads and unloads through a stern ramp in Port Angeles and with a starboard side, hull opening ramp in Victoria, allowing the through flow of vehicles without reversing or U-turns. The design under consideration in this report has only a stern ramp and would require passenger cars to U-turn on the deck while loading and unloading. Trucks would be reversed onto the ship for loading.

VI. Definition and sizing

A. Definition

Initial design parameters were based on the comparison of existing vessels against requirements for carrying capacity and speed. Comparable vessels were drawn from three main sources—classification society databases, external web research, and catalogs in SNAME Ship Design and Construction I. The overwhelming majority of vessels within this speed and capacity regime appear to be monohulls. Examples of monohulls approximately meeting one or more of these initial design parameters are shown in Table 2.

Shin Name	1	B	т	٨	Cars	Pay		Sneed	Power
	L	U	-	4	Ours	Тил		opecu	1 0 000
	[m]	[m]	[m]	[mt]			[mt]	[knots]	[kW]
Queen of Capilano	95.7	21.2	5.8	2500	100	457	602	12	7305
Coho	93.9	21.9	6.2		110	1000	2057	15	5100
Aqua Jewel	96.0	16.6	7.7		160	661	461	18	6358
Veteran	81.1	17.2	6.7		70	200	905	14	5100
M/V Aurora	56.64	20.0	4.2	714	33	250	280	17	2162
Coastal	160.0	27.8	8.8	10034	310	1600	2350	21	21444
Celebration									
Spirit Vancouver Is.	167.5	26.6	5.3	11681	358	2100		23	21444

T 1 1 0	^ //		11 1 1	<u> </u>
Table 2:	Comparable	Mononull Ferry	vessels in	Service

Our initial research indicated that multihulls were primarily relegated to routes with much higher service speeds than were desired for this design. In fact, there were very few vessels operating at a 20-knot intended service speed with similar amounts of capacity

(monohull or multihull). Monohulls primarily operated at much lower service speeds (10-15 knots) or had significantly larger capacities. Multihulls (with a few notable exceptions) operated at much higher speeds.

Linear regression analysis was performed on the ships in the database, and very rough particulars were determined based on existing vessels. These analyses are shown in Appendix B. Comparison of existing monohulls indicated an approximate LWL in the 90-100 m range, estimated displacements were difficult to come by, however the closest monohull analogue to the expected passenger/ vehicle load and size was the Aqua Jewel, which had a power of 6358 kW. Given the large variance in DWT for number of vehicles and passengers, a 100-vehicle monohull is estimated to have a DWT of at least 678 t. The regression and chart used for this analysis is shown in Figure 3. Papanikolau [1] provides an average ratio for DWT/ displacement for RoPax ferries of 24.5%. Using this ratio against the Queen of Capilano (602 DWT, 2500 t actual displacement) gives an estimated displacement of 2457 t based on DWT and confirms the ratio generally. Given this, we expect monohull displacement to come in around 2767 t.

Figure 3: Length Regression from Car Load – Monohull

Figure 4: Power Regression from Length - Monohull

It is important to note that due to the extreme paucity of comparable vessels (as well as the large number of potential variables in any comparison), R² values were well below generally accepted statistical baselines. Regression values were used mainly to evaluate vessel alternatives, as well as to provide general baselines for initial design. These values were then validated using more analytical methods. Regression values were not used to create design parameters.

In the last 20 years, a small but increasing number of small-medium size, medium speed displacement catamarans have been developed and entered into service across diverse markets. The designs of Sea Transport Inc. and BMT are the best examples of these newer low speed catamaran designs. One of the more notable versions of this design paradigm is the M/V Alfred, operated by Pentland Ferries in Scotland and designed by BMT. This ferry is of a slightly smaller capacity and slightly slower service speed than what is required by the initial owner's requirements, however it has vastly less installed power than comparable monohulls (3348 kW vs the Aqua Jewel's 6358 kW, for example). The Aqua Jewel's higher vehicle capacity number and speed do not entirely explain the difference in installed power.

Ferries are challenging vessels to make meet current EEDI requirements. Small to medium ferries frequently operate out of smaller ports where novel fuel options (LNG, methanol, ammonia) are not readily available. It is therefore of utmost importance to try to keep fueling to a readily available fuel such as diesel. Furthermore, novel fuels are

frequently more expensive than their conventional peers. Any improvements to a hull's efficiency will be passed on in significantly lower fuel costs.

Catamarans are generally less efficient per displacement tonne when compared to a monohull. This is due to their greater surface area/displacement ratios (two hulls to carry a comparable weight of cargo), as well as greater residuary resistance due to complex wave interference characteristics between demi-hulls. They do, however, possess an advantage for volume limited vessel types, as a large amount of internal and external volume can be provided relative to a given displacement. Ro-pax ferries (as ferries in general) are volume-limited vessels, making the catamaran hull form a worthwhile option to pursue.

In addition, the long, slender hulls characteristic of catamarans allow for more efficient operation at high Froude numbers relative to a monohull. This is especially applicable for a ferry case such as this, where a 20 kt service speed will place a vessel of our approximate length in a Froude number regime of approximately .30.

Ship Name	L	В	Т	Δ	Cars	Pax	DWT	Speed	Power
	[m]	[m]	[m]	[mt]			[mt]	[knots]	[kW]
Alfred	84.5	22.0	5.3		98	430	550	16	3348
Pentalina	70.6	20.0	5.0	930	80	350	360	17.1	3580
Seascape 1	50.6	16.5	3.2	425	65	250	170	15	1790
Don Nasib	61.2	20.0	5.0	730	93	300	400	17.5	2880
Lite Cat 2	60.6	20.0	4.5		60		340	16	1280
Willem Barentsz	67.8	17.0	5.0	930	65	1300	333	15	3998
Aurora V	56.6	12.0	4.2	714	88	297	280	17.5	2162

Table 3: Table of Comparable	e Catamaran	Ferries in	Service
------------------------------	-------------	------------	---------

A similar regression analysis was performed on the table of comparable catamarans, and indicated an approximate LWL in the 75 m range, with a total displacement of approximately 738 t. The regressions are shown in Figure 5 through Figure 7. Additional DWT regressions are shown in Appendix B. R² values for all regressions were extremely low, and indicate large variability from vessel to vessel. This is due to a large amount of variability in construction techniques (aluminum vs steel), as well as varying car carrying configurations and car weight estimations. The displacement estimation is especially suspect. However, broad interpretations can be taken from the regressions.

Figure 5: Length Regression from Car Capacity - Catamaran

Figure 5 shows a regression of length from car carrying capacity. As mentioned previously, there is a large amount of variance. This could result from varied methods for storing cars (multi-tiered, ramped, etc.). The comparable vessel closest to the intended use case (M/V Alfred) carries 100 cars on a single deck and has a length of 84.5 m. Its passenger capacity is less than the desired capacity for this vessel. This suggests a vessel slightly longer than 85 m is likely to best fit the necessary profile.

Figure 6: Power Regression from Length - Catamaran

Figure 6 shows a regression of power from length. Variance is less than for length, however the regression still indicates large amounts of statistical noise. This is likely due to the varying speed regimes at which the ferries operate, and the highly variable effects of catamaran hull forms on residuary resistance. There is much greater ability with a catamaran to taper hull form to a particular speed regime. For rough comparison purposes, a 90 m catamaran RoPax ferry would seem to have about 4270 kW of installed power for an average speed of 16.3 kts (the average of the sample group).

Figure 7: Displacement Regression from Car Capacity

The regression shown in Figure 7 (displacement vs car capacity) is statistically useless. However, the displacements are all below 1000 t. When compared against DWT (and this ratio compared against monohull vessels), these displacements indicate that a catamaran RoPax ferry can have a much higher DWT/displacement ratio to a comparable monohull. This suggests a potential strength of catamarans vs monohulls in a RoPax ferry configuration.

It is incredibly difficult to find vessels within this size and speed regime being built as conventionally powered monohulls or catamarans today. The speed requirement for this vessel is in a Froude number range that is well above optimal efficiency. The vast majority of ferries within this size regime are either powered by LNG, operate at much slower speeds, or were designed and built before the advent of contemporary EEDI rules. We believe this is due to the low DWT to displacement ratios of most Ro-Pax ferries. This is the driving consideration behind most EEDI regulations.

We decided to analyze a medium speed/medium size catamaran ferry to determine tradeoffs as compared to monohull.

Advantages of catamaran design:

- -Low draft, allows for greater number of ports to be accessed
- -High stability

-Redundancy of systems

-High flexibility to tailor displacement to volume needs without compromising

stability (reducing power requirements)

-High maneuverability

Disadvantages of catamaran design:

- Higher cost of construction
- -More limited loading/unloading options (drive through much more difficult)
- -Greater beam
- -Potential for deleterious seakeeping characteristics
- -High resistance for comparable volume when compared to monohull

Advantages of monohull design:

- Large number of existing vessels allows for ease in estimation
- Known behaviors and technology
- Simpler ramp configuration
- -Existing infrastructure generally supports monohull loading configurations

Disadvantages of monohull design:

- -High stability requirements necessitate high displacement
- -Complex vehicle loading ramp configuration to maximize vehicle storage space

-Vehicles must be stored in enclosed spaces

-Relatively high draft to displacement ratio

- High speeds at this size regime (~100m) requires novel fuel sources to meet EEDI
- -Low maneuverability using conventional propulsion

Unlike their high-speed cousins, medium- low speed catamaran vessels can be built from steel, reducing cost. While displacement is a concern in all vessels, and especially in catamarans, a non-planing vessel will have a more forgiving speed/displacement regime and can therefore get away with a steel hull.

Given the (deserved) focus on reduced emissions in contemporary shipbuilding, EEDI and efficiency are the most crucial deciding factors in choosing a hull form. With the choice to maintain a non-novel fuel supply, the hull must operate significantly more efficiently than existing hull forms in order to meet EEDI requirements. Although novel-fuel sources are viable options to decrease the vessel's overall environmental impact, these fuels are significantly more expensive per unit energy, placing a further premium on hull efficiency. For these reasons, the optimal hull form to pursue for this application appears to be a medium speed catamaran.

B. Sizing

Initial sizing of the catamaran hull was achieved using regressions from the database of comparable ferries and a parametric excel spreadsheet. The predominant factor in the design was the size of the Ro-Ro deck. Standard vehicle sizes were taken from Ship Design and Construction, Vol II [1]. These sizes and weights are shown in Table 4. Adjustments were made to some of the values, due to changes in average vehicle dimensions over the past 20 years. For example, a Honda Accord (a four-door sedan that would once have been considered a large vehicle) is 4.9 m long by 1.9 m wide, with a weight of 1.6 mt [2]. Comparatively, the smallest Ford F-150 has an overall length of 5.3 m, a width (excluding mirrors) of 2.03 m, and a weight of 2.12 mt. Given the proliferation of light trucks and SUV's (which currently outsell cars by a margin of 3-1 in the US), it is a necessity that more space be allocated per vehicle in order to achieve a 100-vehicle capacity [3]. The dimensions of a Honda Accord were used to roughly represent the median vehicle in the vessel's market (USA/Canada).

Type of Vehicle	Length [m]	Breadth [m]	Height [m]	Weight [mt]
Passenger Car	5	2.3	2.4	1.7
Bus / Small Lorry	12.3	3.2	4.2	17
Truck	18.7	3.2	4.8	28

Using the tables of comparable vessels, as well as a parametric mathematical model of car length, beam, and height on a single vehicle deck, a set of guiding principal particulars was determined for a catamaran ferry. The results of this analysis are shown in

Table 5. Particulars were driven by a need for at least 500 lane meters of car space (100 cars of 5 m length), with each lane between 2.5 and 3.5 m wide (to allow loading for some combination of trucks and buses to be carried as well). Expected DWT is based on a worst-case loading of 10 trucks, 66 cars, and 650 passengers at 200 kg/ passenger.

Length	90 m
Beam	25 m
Draft	3 m
Displacement	2300 t
DWT	750 t

As the structure, weight estimates, and powering were changed, the particulars of the vessel were updated to arrive at our final preliminary estimates.

VII. Hull Forms and Curves of Form

A. Initial Form Decisions

Hull models were developed using the Maxsurf design suite. Due to the vessel's catamaran configuration, demi-hull form can be almost entirely separated from most of the vessel's operational needs. Carrying capacity and stability are both functions of total vessel beam and length and are not reliant on the shape of the individual demi-hulls. The primary concern in this design is the shape of the hull to minimize resistance for optimal fuel efficiency.

Initial form characteristics were grossly generalized by Fn. For the purposes of initial design, low Froude numbers are generally those that are under 0.15, while high Fns are those over 0.25 [4, p. 81]. With these considerations in mind, the vessel is well within the range of what could be considered a high Fn vessel. As Fn increases, frictional resistance increases linearly, while residuary resistance increases exponentially. Therefore, residuary resistance quickly becomes the dominant force of resistance for high Fn vessels. The

primary intention in developing each demi-hull form is to reduce wave making resistance without compromising frictional resistance.

Semi-SWATH hull forms have been effectively used to reduce the amount of resistance and improve seakeeping abilities of catamaran vessels [1, pp. 45-8]. A typical semi-SWATH vessel configuration utilizes a very fine forward entry and small forward waterplane (similar to a conventional SWATH vessel) while gradually transitioning to a full aft waterplane characteristic of traditional catamarans. Semi-SWATH hulls generally incorporate round bilges, although the sterns of more modern vessels can include hard chines to improve directional stability (obviating the need for skegs in otherwise directionally unstable multihulls) and simultaneously reducing manufacturing costs [1, pp. 45-8]. This design methodology results in a bulbous bow, along with an almost "delta" shape to the hull, with full waterline beam not being achieved until midship.

For this preliminary design, the complexity of a round bilge to chine transition was not considered. In future design refinements, the implementation of this design choice would likely result in reduction of wetted surface area, and therefore improved efficiency.

The fundamental concerns in initial hull design are as follows:

- -Minimizing beam and increasing slenderness of the demi-hulls to reduce residuary resistance.
- -Fine entry at the bow, with most immersed volume carried well below waterplane
- -Limited parallel midsection to reduce pressure concentrations at shoulders of hull. Significant parallel midbody is not necessary to preserve volume, as all major volume is carried above the demi-hulls

-Smooth transitions between all major regions of the hull to minimize resistance.

B. Specific Hull Shape Considerations

The interactions between catamaran demi-hulls and the resulting wave generation are not easily modeled using empirical methods. CFD analysis is generally the best method for optimizing the design of multihull vessels. However, a systematic series of tank tests were carried out at the University of Southhampton in 1994 by A.F. Molland, et al [5]. These tank tests utilized demi-hulls of varying length/displacement ratios and beam/draft ratios. The demi-hulls were then configured in differing demi-hull separation/length ratios. Ultimately,

the results of these tank tests were expressed as non-dimensionalized residuary resistance coefficients. Vessel parameter values necessary for comparison are shown in Table 6 below.

Initial Hull Form Parameters				
L/ $\nabla^{1/3}$ (Per Demi-hull) 8.68				
B/T Ratio (Per Demi-hull) 2.357				
Separation/Length (S/L)	.2034			
Froude Number	0.32			

Table 6: Parameters of Catamaran Ferry Hull for Comparison with Molland Values

L/∇ ^{1/3}	B/T			C _P
	1.5	2.0	2.5	
6.3		3b		0.693
7.4	4a	4b	4c	0.693
8.5	5a	5b	5c	0.693
9.5	6a	6b	6c	0.693

Table 7: Notation and Main Parameters of Molland Models [5]

*Where 3b, 4a, 4b, 4c, etc. are model names.

Rather than attempt to design to the hull forms shown in Table 7, an initial hull form was developed from the table of guiding principal particulars, and then confirmed by comparison against the Molland values.

The closest Molland reference hull-forms to the guiding parameters shown in Table 6 were the 5 and 6 series b and c hulls, with the 5c reference hull-form closest to the initial design. Numeric series vary demi-hull L/⊽ ratio, while letter series denote variance in demihull B/T ratio. All hull forms were tested at varying S/L ratios. Since beam of this vessel is

constrained by a need to easily access a variety of restricted ports, no special consideration was given to the variance of S/L. The initial parameter of 0.2 was considered constrained, although a comparison between S/L ratios for hull 5c is shown in Figure 11.

Molland does not provide a chart comparing c series hulls against one another, so an initial comparison of demi-hull B/T ratio was performed using the b series hulls. Residuary resistance coefficients for these hulls are shown in Figure 8. The red cross indicates the approximate location of the initial guiding parameters at maximum Froude number for this vessel. Residuary coefficients of the 5 and 6 series hulls approximately intersect at this location, although the 5 series appears to achieve lower resistance values at Fns below 0.32, while the 6 series seems to be privileged above 0.32. This indicates that the 5 series L/∇ ratio (8.5) is best for the expected operating envelope of this vessel.

Figure 9: Residuary Resistance for Models 5a, 5b, and 5c; S/L = 0.2 [5]

Comparison between 5 series demi-hull B/T ratios are shown in Figure 9. In this case, the higher B/T ratio of the c series hull is privileged over the b series until a Fn of approximately 0.28. Current design parameters place this hull design between the b and c series, and this suggests that counterintuitively, increasing beam of the demi-hulls while reducing draft could improve efficiency to some degree. Although optimization of the hull form is outside the scope of this preliminary design, this indicates that there are further efficiency gains to be made with this hull form. Given current parameters, it is anticipated that CFD will provide a Cr of approximately 3.750*10⁻³ for this hull shape.

Figure 10: Residuary Resistance for Models 6a, 6b, and 6c; S/L = 0.2 [5]

Since the demi-hull form is between the 5 and 6 series in L/ ∇ ratio, a similar comparison is shown for the 6 series in Figure 10. In this case, the efficiency gains from increasing B/T ratio are even more pronounced, especially as Froude number decreases from vessel maximum speed. There is a pronounced hump in the residuary resistance at Froude numbers less than 0.32 that appears to be potentially minimized by making this adjustment. Given current parameters, it is anticipated that CFD will provide a Cr of approximately 3.750*10⁻³ for this hull shape.

Figure 11: Residuary Resistance for Model 5c, Varying S/L Ratio

Although variance of S/L ratio is not practicable for this vessel, a comparison of 5c hulls at various S/L ratios is shown in Figure 11. This comparison does provide general guidance as to the use of catamaran form factors for general use for high-efficiency ferries in congested areas. Interestingly, the C_R curve for an S/L ratio of 0.2 roughly intersects that of an S/L ratio of 0.3 in this speed regime. For Froude numbers under 0.32, there may actually be a slight advantage to an S/L ratio closer to 0.2. Markedly reduced resistance does not appear to occur until an S/L ratio of 0.4, at which point the gains will likely be more than offset by the reduction in hull length for a given carrying capacity. Again, given established parameters, it is anticipated that CFD will indicate a Cr of approximately 3.750*10⁻³ for this hull shape.

C. Final Hull Fairing

Initial hull modelling and fairing was performed using Bentley's Maxsurf Naval Architecture software. Demi-hulls were designed with roughly symmetrical inboard and outboard sections. Topsides were modelled as separate surfaces from immersed portions of the hull to allow for larger areas of low curvature and decrease ultimate cost.

Figure 12: Underside of Hull Model with Net and Longitudinal Curvature

As mentioned in (B), hard chines aft of midships will likely improve ultimate efficiency and maneuverability of the vessel. At this stage of the design process however, the additional modelling complexity and extra complicating parameters do not justify their inclusion. Figure 12 shows the very fine entry and long taper to max waterline beam of the demi-hulls. Predominant consideration was given to ensuring well faired sections below the waterline for the purposes of CFD.

Figure 14: Axonometric View of Hull with Net and Longitudinal Curvature

Figure 14 shows the faired hull. There remains space for further improvements to reduce resistance, however the waterline shape contains most intended design principles, and is sufficient for obtaining initial powering requirements and design parameters.

VIII. Area and Volumes

The demi hulls are each divided into eight watertight compartments by seven transverse bulkheads. The foremost bulkhead is spaced in accordance with SOLAS regulations for a collision bulkhead. Each engine is enclosed in its own watertight compartment on the tank top. There is a double bottom structure containing salt water ballast tanks. The aft peak

ballast tank and tankage for MDO, lube, fresh and black water is located on the tank top deck. In order to meet two compartment flooding requirements, the bow thrusters are separated by a bulkhead.

Tank/Space	Area [m2]	Volume [m3]
Vehicles	2,463	7,390
Passengers	1,400	4,241
Machinery	1,443	4,376
Peak Tanks	243	525
Engine Rooms	309	927
Bow Thruster Rooms	96.4	337
General Tank Top Rooms	344	1,031
Salt Water Ballast Tanks	653	848
Fresh Water	16.0	16.0
Black Water	40.2	80.4
Marine Diesel Oil	61.1	122
Lube Oil	1.65	1.65
Waste Oil	0.83	0.83
Bilge Tanks	27.2	27.2

Table 8: Summary of Areas and Volumes

IX. General Arrangement

A. Tank Top Deck

The propulsion machinery and tankage are located on this deck. Two engines in each demi hull are staggered fore and aft into separate compartments. Shaft alleys extend aft and shaft generators are located on the inboard propulsion engines. Marine diesel oil, lube oil, fresh water, and black water tanks are located forward of the engine compartments. The bow thruster rooms are located forward of the black water tanks and aft of the fore peak ballast tank.

B. Machinery Deck

The hotel load generators, chillers and HVAC equipment is located on the machinery deck. In the bow, the fore peak tank extends upward into this deck. At the stern is the steering gear room. While some of the machinery deck will be filled with electric and pipe outfit, there is ample free space on the machinery deck for crew quarters or other uses.

C. Main Deck

The main deck is the roll-on deck. In the stern, offset to port, there is an 89.9 square meter hydraulically deployed ramp providing passenger and automotive loading. Most of this deck is occupied by automotive parking. The 525 lane-meters of parking area can accommodate up to 72 cars and 9 articulated trucks. Access to the upper decks is provided by 4 sets of stairs and a lift. The outboard areas are reserved for structure and mechanicals. The deck is wide enough for cars to drive on and turn around. Trucks will be reversed into the central parking slots. There is an anchor chain locker in the forward center of the main deck.

D. Passenger Deck

There are 650 seats arrayed around the outboard areas of this deck. The aft central area of the deck is absent to allow headspace for truck parking. In the forward central area, there is a food service with dining table seating for 32 with attendant areas for food preparation and service. Five bathrooms are located in this forward section with four more aft of the passenger seating. The electric room, crew mess, sick bay and information desk are located in the forward center section. Three stairways and a lift allow access to the upper bridge deck. The anchor and windlass are located at the bow forward of passenger spaces.

The passenger deck is divided into fire barrier compartments with fire doors at the bulkheads. There are four marine evacuation slides located in passenger areas fore and aft.

E. Bridge Deck

The upper deck of the ship contains seating for 100 passengers in an enclosed section at the center. The aft areas contain outside bench seating for another 160 passengers. Engine mechanicals, air intake and exhaust, occupy the outboard aft areas. Forward of the enclosed passenger seating is the bridge and a set of restrooms.

Life rafts and rescue boats are located on the outboard aft portions of the bridge deck. These outside areas will be used as a muster location in case of emergency.

The open-air portions of this deck could enclose any additional seats fitted if there is a need for more passengers on board. Ship stability will not be sufficiently adversely affected to prohibit this design change. The current ferry on this route, the MV Coho, has seating for 1000 passengers. During peak summer season, the 350 additional seats may be required.

X. Structural Design

A. ABS Requirements and Scantling Sizing

The structural design of the ship is in accordance with the American Bureau of Shipping, Requirements for Building and Classing SWATH Vessels [6] and Rules for Building and Classing Marine Vessels [7]. As this design exceeds 90 meters in length, the rules for larger SWATH vessels were applied. A spreadsheet was created to transform the equationbased rules into plate thicknesses and section moduli for structural components. Design dimensions were then compared to these values to ensure compliance with relevant class regulations.

The design includes transverse frames spaced at 1.25 meters with sufficient longitudinal girder structures to create the necessary midship section modulus. Stringers are spaced at 0.75 meters throughout ship and are placed longitudinally on the hull, decks, and longitudinal bulkheads, and vertically on the transverse bulkheads. Additional longitudinal girders are placed to create reinforced shaft alleys and machinery support structures in the double bottom.

The hulls of the ship and bridging structure up to and including the Roro deck are designed in steel. The superstructure is designed in aluminum. Since this is a catamaran design, the use of aluminum to reduce weight high in the vessel has little effect on the stability. The weight reduction allows for an improved deadweight to lightship ratio, reducing power requirements. There will be a dielectric connection between the steel hull forms and the superstructure to prevent galvanic corrosion.

The SWATH design envisions wave slamming forces affecting the bow and wet deck areas. Design pressures were calculated which guided the thickness of plating and size of structural members. In many cases these values are greater in the bow than in the after portions of the vessel. While the rules envision high speed designs with significant wave

slamming, our low-speed design may not produce these forces to the same degree. Nonetheless, the SWATH design rules were used to guide the sizing of these components. Additional weight reduction might be achieved by a more accurate estimation of these forces in a lower speed vessel.

To further validate this design, the rules for SWATH vessels over 90 meters require that the bridging structure between the demi-hulls be subjected to an ABS acceptable finite element analysis (FEA). This process would determine whether the bridge deck can endure forces unique to multihull vessels. Yawing, pinching, and twisting forces will stress the bridge deck in ways not present in monohull vessels. In this early pass around the design spiral, the goal of the structural calculations was to determine an estimate for the lightship weight. If this design was subjected to FEA analysis, the wet deck – Roro deck connection and the haunch structures may require significant structural additions, possibly increasing the steel weight of the vessel by a few percentage points.

It has been difficult to find structural drawings of this type of low-speed catamaran to compare sizing of structural members and validate the design choices. Ship Design and Construction, Volume II [8], does include a midship section from a SWATH vessel with similar transverse web frames, hull and deck plating and longitudinal members. The sizes and spacing of these components in the design presented in this paper are close enough to build confidence that the scantling sizing is suitable.

Structural Part	Required Section Modulus [cm³]	Design Dimensions Web, Flange [mm]	Design Section Modulus [cm³]	Δ Section Modulus [cm³]	Material
Demi-Hull Transverse	589.34	350x8, 100x8	602.98	13.64	Steel
Frames					
Frame Wet Deck Bow-	180.53	220x6,100x5	207.37	26.84	Steel
>0.2L					
Frame Wet Deck	131.79	200x6, 60x5	138.6	6.84	Steel
0.2L->Transom					
Frame In Haunch	150.23	220x6, 60x5	162.27	12.04	Steel
Bow->0.2L					

Table 9: ABS Required Structural Scantlings

Frame In Haunch 0.2L-	126.62	210x6, 60x5	138.79	12.17	Steel
>Transom					
Frame Out Haunch	135.97	220x6, 50x5	150.66	14.69	Steel
Bow->Transom					
Tank Top Deck Beams	296.63	280x8, 200x6	306.34	9.71	Steel
Machinery Deck Beams	296.63	280x8, 200x6	306.34	9.71	Steel
Roro Deck	395.50	300x8, 220x6	430.06	34.56	Steel
Beams					
Passenger Deck Beams	244.68	260x8, 220x6	267.67	24.99	Aluminum
Bridge Deck	244.68	260x8, 220x6	267.67	24.99	Aluminum
Beams					
Tank Top	771.55	400x8, 100x8	827.43	55.88	Steel
Girders					
Machinery Deck	771.55	300x10, 250x8	810.41	38.87	Steel
Girders					
Roro Deck	1,175.69	350x8, 250x8	1,204.15	28.45	Steel
Girders					
Baseline to Tank Top	30.78	140x8 Bulb	32.50	1.72	Steel
Stringers		Plate			
Tank Top - Machinery	21.31	120x8 Bulb	23.60	2.29	Steel
Stringers		Plate			
Machinery to Roro	7.10	80x6 Bulb Plate	8.15	1.05	Steel
Stringers					
Roro to Passenger	9.47	100x6 Bulb	12.70	2.26	Aluminum
Stringers		Plate			
Main To Bridge Deck	16.58	120x6 Bulb	18.50	0.24	Aluminum
Stringers		Plate			

Table 10: ABS Required Plating Thicknesses

Plating Area	Required Thickness [mm]	Design Thickness [mm]	Material
Wet Deck	6 17	7.0	Steel
Bow->0.2L	0.17	7.0	Sicci
Wet Deck	5 28	60	Stool
0.2L->Transom	5.20	0.0	0.661
Inboard Haunch	5.63	6.0	Steel

Bow->Transom			
Outboard Haunch	5 36	6.0	Stool
Bow->Transom	5.50	0.0	Sieei
Lower Hull	7 67	8.0	Steel
Bow->0.2L	7.07	0.0	
Lower Hull	6 78	7.0	Steel
0.2L->Transom	0.70	7.0	
Double Bottom, Collision, and	5 51	6.0	Steel
Watertight Bulkheads	0.01	0.0	
Tank Top Deck C&W	4.5	5.0	Steel
Bulkheads		0.0	Sieei
Machinery Deck C&W	3.90	4.0	Steel
Bulkheads			
Double Bottom	5.71	6.0	Steel
Tank Bulkheads			
Tank Top Tank	4.84	5.0	Steel
Bulkheads			
Tank Top	5 1 2	6.0	Stool
Strength Deck	0.12	0.0	01001
Machinery Deck	6.61	7.0	Steel
Wet Deck	7.62	8.0	Steel
Roro Deck	6.22	7.0	Stool
By Loading Rules	0.52	7.0	31661
Roro Deck	6.61	7.0	Steel
By SWATH Rules	0.01	7.0	0.661
Passenger Deck	9.48	10	Aluminum
Bridge Deck	10 72	11	Aluminum
Open or Enclosed	10.72		Adminunt

Table 11: ABS Required Bulkhead Stiffeners

Bulkhead Stiffeners	Required Section Modulus [cm³]	Bulb Plate Steel	Design Section Modulus [cm³]	Δ Section Modulus [cm³]	
Collision & Watertight					
Double Bottom	120.24	220 x 12	122.0	1.76	
Tank Top Deck	89.17	200 x 11	92.3	3.13	
Machinery Deck	44.77	160 x 9	47.9	3.13	

Tank Bulkheads				
Double Bottom	77.08	200 x 9	77.7	0.62
Tank Top	40.08	160 x 8	43.9	3.82

B. Midship Section Strength Assessment

A midship section was created in HECSALV software based on the plate thickness and scantling dimensions derived from ABS requirements [6]. This design software output values for moment of inertia, section modulus and extreme fiber distance. The ship model created in Maxsurf was subjected to still water, hogging and sagging calculations to determine bending moments for 10 load conditions. These bending moments were used to calculate the midsection bending stresses at the Roro deck and the keels. These values were compared with the allowable stress for mild steel and were found to be well below the stresses that would cause failure. Factors of safety varied from 2.6 to 9.3 for various bending scenarios and locations.

Material Yield	234	MPa		
Allowable FOS	2.3			
Material Allowable	102	MPa		
			Actual FOS	OK?
Still water Deck Stress	25.24	MPa	Actual FOS 9.3	OK? OK

Table 12: Midship Strength Analysis Results

Hogging Deck Stress	45.53	MPa	5.1	OK
Hogging Bottom Stress	91.06	MPa	2.6	OK
Sagging Deck Stress	25.41	MPa	9.2	OK
Sagging Bottom Stress	50.82	MPa	4.6	OK

XI. Resistance, Speed, and Initial Power Analysis

A. Initial Determination of Resistance

Due to the complex nature of residuary resistance in catamaran hull forms, there is no good method of numerically estimating resistance with the standard methodologies used in monohulls. Holtrop and Mennen's used method of analysis and estimation is based on a regression analysis of monohull vessels and was of very limited use in this design. Very generalized coefficients of residuary resistance were calculated using Molland et. Al [5]. These values were compared against values generated by CFD software.

B. CFD Analysis

CFD analysis was performed using the Orca3D Simerics Plugin. Hull models developed in Maxsurf Modeler were exported to Rhino3D for minimal processing. An early visual showing pressure concentrations is shown in Figure 16. The slender hull forms show comparatively little pressure past the bow bulb. Since the hull form lacks any noticeable shoulder, wave generation is consistent along the length of the hull. As expected, the catamaran hull form generates significant interference between the hulls, with a very large high-pressure area in the wake zone.

Figure 17: CFD Calculated Resistance Coefficients

Figure 18 shows resistance at various operational speeds as calculated by Orca 3D CFD. There is a very distinct contour to the Cr curves that holds ramifications for powering. The current hull form shows a large increase in residuary resistance in the 16-18.5 kt realm due to positive wave interference. Interestingly, at speeds below approximately 16.5 kts, the amount of residuary resistance drops below that of frictional resistance due to negative wave interference. This effect occurs again above 18.5 kts. As currently designed, this places vessel resistance at top speed in a pronounced dip, while cruising speed is expected to be near the top of the curve. This results in a very flat speed/power curve in the expected operational envelope.

Figure 18: Bare Hull Resistance VS Effective Power

Bare hull resistance and effective power curves are shown in Figure 18. As expected, speed/power ratios are relatively flat in the 15 kt region, increase rapidly through 18 kts, and level off through 21 kts. Detailed results are shown in Appendix G.

C. Power Analysis

To maximize the benefits of the catamaran hull form, draft must be kept to minimum. This limits the size of possible propellors. While high speed catamarans frequently utilize waterjets to mitigate these low draft effects, waterjets are dramatically less efficient than propellors (especially at speeds below 35-40 kts). The need to maintain the highest

possible efficiency ruled out consideration of waterjets for this design. Although single propellers are generally more efficient, overloading a single propellor will result in severe losses in efficiency. To prevent overloading, four propellers were used in the design (2 per demi-hull). Per CFD analysis, a bare hull speed of 18 kts requires an effective power of 2872.7 kW. Assuming an initial estimating ratio of 50% bare hull EHP to total BHP leads to a total BHP for the vessel of 5745.4 kW. Divided between four engines, an initial estimate of 1436 kW per engine is obtained.

XII. Propulsion plant selection

A. Power Plant Tradeoffs

The selection of the power plant was guided by a combination of power requirements, weight, emissions, fuel consumption, fuel availability and IMO/EPA/EU compliance. Wartsila, Yanmar and MTU have designed and marketed ferry specific, high speed diesel engines that are lightweight compared with other marine diesel power plants. The power to weight ratio of the high-speed diesels average 2.7 times that of medium speed marine diesel engines.

Model	Manufacturer	Power	Weight	Power/weight	Speed
		[kW]	[mt]	[kW/mt]	
6EY26W	Yanmar	1,471	18.5	80	medium
20 8L20	Wartsila	1,480	10.5	141	medium
6L250	GE	1,498	15.9	94	medium
			average	105	medium
3512C	Caterpillar	1450	7.488	194	High
16V 2000	MTU	1440	4.3	335	High
M72					
KTA38-DM	Cummins	1119	4.22	265	High
12AYEMGT	Yanmar	1340	4.78	280	High
14 16V	Wartsila	1340	3.8	353	High
			average	285	High

Table 13: Power to Weight Ratio Comparison

The 1436 kW initial estimated power requirement per engine of this ferry design eliminated the Wartsila and Yanmar engines with a maximum power of 1340 kW. The inclusion of a reduction gear in the MTU engine provides additional weight savings and design simplicity over the other manufacturers. The MTU engine is compliant with IMO Tier II, EPA 2, and EU IIIA emissions requirements and is acceptable to ABS and other major classification societies.

	MTU 16V 2000 M72	Yanmar 12AYEM-GT	Wartsila 14
			16V
Power [kW]	1440	1340	1340
Weight [kg]	4300	4780	3800
IMO Compliance	Tier II	Tier II	Tier III w/ NOx
Fuel Consumption	361	350	323
[l/hr]			
Reduction Gear	Yes – ZF5000	No	No

Table 14:Comparison of High-Speed Marine Diesel Engines

The MTU 16V 2000 M72 was selected for further analysis.

B. Specified Powerplant Analysis

NavCad Design suite was used to further refine powering predictions

NavCad Powering Estimates – MTU 16V 2000 M72							
Speed (kts)	PE TOTAL (kW)	RPM Engine	PB Eng (kW)	Load Engine (%)			
5	90.5	683	38.7	2.7			
9	524.6	1228	215.6	15			
13	1198.6	1656	472.8	32.8			
15	1807.2	1902	709.9	49.3			
17	2587.1	2148	1012.8	70.3			
+ 18.00 +	3047.3	2270	1191.2	82.7			
19	3557.4	2392	1388.9	96.4			
20	4119.7	2514	1607.2	111.6			

XIII. EEDI Analysis

Figure 19:IMO Energy Efficiency Design Index Formula

A primary goal in the design of this ferry is to achieve compliance with IMO Energy Efficient Design Index (EEDI) Phase III requirements while using commonly available marine diesel oil as fuel. While this goal could more easily be achieved using liquified natural gas (LNG), the limited availability of this fuel makes it unsuitable for the Port Angeles to Victoria route. The lower speed, lower resistance and the higher dead weight load to lightship ratio allows a higher cargo to propulsive power ratio. The intermittent use of shaft generators reduces the size of electric generators, which cover only hotel, not bow thruster, power loads. Replacing compressor driven air conditioning equipment with marine chillers provides further reductions in electric demand and utilization of recovered waste heat from the propulsion engines. Both of these systems improve the EEDI index of this design. Our attained EEDI value is 39.6, below the required EEDI value of 42.7.

XIV. Electric Load Analysis

The electric requirements of the vessel are separated into four operating scenarios; Maneuvering, Underway, Emergency and Docked. The electric power requirements of the vessel will be supplied completely by two diesel gensets while in all modes except Maneuvering and Emergency. While approaching the dock using the four bow thrusters, two of the main engines will be decoupled from the propeller shafts and be designated to operate shaft generators to accommodate the heavy load of the electric bow thrusters. Similarly, for emergency situations two of the main engines will be dedicated to shaft generators.

Bilge, ballast and fire pump sizing and electric requirements are based on the ABS Marine Vessel Rules for Bilge Pimp Sizing [6]; US Coast Guard Review of Bilge and Ballast Systems (46 CFR 5.50-50(d) [9]; and SOLAS Chapter II-1, Regulation 35-1 3.9 Chapter 6 Section 5 11.5.4. Hydraulic pump electrical requirements are based on flow rates for operating steering gear and Roro ramps, with redundancies for emergency situations.

Lighting loads are estimated from commercial standards for passenger and industrial environments. Food service electrical loads are estimated from a Consolidated Edison estimate of 0.67 kW/m2 for a 144 m2 service area.

The HVAC systems are based on chillers and heaters operated on recovered waste heat from main engines. The adsorption chillers provide an 85% power savings over operating traditional compressor chiller devices. The heaters will operate using waste heat from the engine coolant and will require minimal loads to operate pumps. Air circulators will provide chilled and heated air to the passenger and crew spaces.

The provision of power will be from two 250 kW diesel gensets, 2 intermittently operated 700 kW shaft generators and a 100-kW emergency backup generator. Total generating capacity of 2000 kW will cover the highest demand Emergency Scenario of 1514 kW.

Component	Number	Load [kW]	V] Operating Mode [kW}			
		Each	Maneuvering	Underway	Emergency	Docked
Bow Thrusters	4	275.4	1101.6		1101.6	
Lighting						
Passenger Spaces		25.8	25.8	25.8	25.8	25.8
Crew & Machinery		30.3	30.3	30.3	30.3	30.3
Emergency Lights		10			10	
Navigation		10	10	10	10	10
Pumps						
Hydraulic Oil	2	76.8	153.6	76.8	153.6	76.8
Fuel	4	1.0	4.0	4.0	4.0	
Lube Oil	4	1.0	4.0	4.0	4.0	
Potable Water	2	2.0	4.0	4.0	4.0	4.0
CHT	2	4.0			8.0	8.0
Bilge	2	16.8	16.8	33.6	16.8	
Fire Pumps	2	22.3			44.6	
Ballast	8	5.0			40	20
HVAC						
Chillers (90 tons)	2	2.3	4.6	4.6		2.3
Heaters	2	2.0	4.0	4.0		2.0
Air Circulators	 20	0.3	5.0	5.0	5.0	5.0

Table 16: Electric Load Analysis

Food Service	1	96.5	48.2	96.5	19.3	96.5
Bridge Fauipment	1	15	15	15	15	
Anchor Windlass	1	22	=		22	
Mooring Windlass	2	8.0	16			16
		TOTAL	1458.2	356.6	1514	318.2

XV. Major mechanical systems

A. Hull Equipment

Four bow thrusters, two per demi hull, are specified in this design. The sizing of the bow thruster is based on the beam windage area of the vessel. Wartsila provides formula for electric demand for bow thrusters in ferries. [10] Power demand ranges from 0.54-0.96 kW per square meter of beam windage area. The bow thrusters are sized at a mid-point value of 0.72 kW/m². Given a windage area of 1530 m², the total demand is 1102 kW divided into four 275 kW thrusters. Based on a brochure from PT Marine for transverse thrusters, the design specifies four 275BTM thrusters with a tunnel diameter of 1110 mm [11].

B. HVAC

A typical compressor driven HVAC system would be the largest non-maneuvering consumer of electricity. In order to reduce power demand for the air conditioning, this design specifies the use of waste heat recovery marine absorption chillers. This will result in an 85% reduction in electric demand compared to a similarly sized compressor/condenser system. Waste heat from the engine exhaust and the engine cooling water jacket will pass through a heat exchanger heating a hot water loop and providing thermal energy to the absorption chiller's generator. Cooling load demand, based on heat transfer calculations of passenger compartment window and surface area and passenger occupancy total 40 tons. In order to provide redundancy, two Heinen & Hopman SWM-60 absorption chillers providing 50 tons of cooling capacity per unit, are located port and starboard on the mid machinery deck [12]. In cold weather the engine heat recovery loop will provide hot water to radiators in the air handling units.

Figure 20: Exhaust Heat Recovery System

ENGINE HEAT RECOVERY

C. Pumps

Bilge and ballast pumps have been sized in accordance with ABS Marine Vessel Rules for Bilge System Sizing and US Coast Guard Review of Bilge and Ballast Systems (46CFR 56.50-50(d)). Based on these criteria the main bilge lines should be 4.58 inches in

diameter. The design calls for five-inch pumps in each demi hull with crossover piping between. This will yield a flow rate of 750 GPM per pump. Fire pump sizing is in accordance with SOLAS Chapter II-1, Regulation 35-1 3.9 Chapter 6 Section 5 11.5.4. This regulation requires a minimum of two fire pumps with a capacity of 4/3 the flow rate of the ballast system. The design specifies two 1000 GPM pumps producing a pressure of 43.5 psig. Hydrants shall be located in the engine rooms, shaft tunnels, at the steering gear, on the main deck, in the accommodations, and at the bow for anchor washing. Hydraulic pumps are sized according to flow rates demanded by the steering gear and the Roro ramp. At a pressure of 320 BAR, 144 l/min are required. For redundancy, a pair of Kawasaki K3VL60 piston pumps are specified [13].

D. Electric Generators

Electric loads will be met by two systems. Two 250 kW Caterpillar C9.3 marine generators fueled with marine diesel oil will provide for continuous hotel loads [14]. They will be placed on the mid-machinery deck, one each on the port side and starboard side. A single 100 kW Caterpillar C7.1 generator will be located on the starboard side of the Roro deck to serve as an emergency backup generator [15] [16]. During docking maneuvers and in emergency situations, two of the main propulsion engines will be decoupled from the propeller shafts and will generate electricity to power the four bow thrusters. A pair of 700 kW Marhy marine hybrid drive systems have been chosen for this design. These consist of a remotely engaged propeller shaft clutch which disconnects the propulsion engine from the propeller shafts and engages a generator gearbox. This gearbox diverts power into a generator. The shaft generators will operate in PTO mode only and will not be used as a redundant propulsion system [17].

Figure 22: Marhy PTO Shaft Generator System

E. Anchor and Windlass

Ground tackle has been sized according to ABS Regulations for Design and Classification of SWATH vessels [6]. These calculations generate an equipment number of 1109 which specifies an anchor weighing 3540 kg and 19 shots of 60 mm chain weighing 42,180 kg. The maximum load on the anchor windlass will be 73,890 kg. The chain locker will be 104 m³ based on the Germanischer Lloyd formula [18].

XVI. Mission specific equipment and outfitting

A. Outfitting

The outfitting for this ferry will include 650 passenger seats on the main passenger deck, 32 seats in the dining area, an additional 160 seats inside the bridge deck, and room for 100 more passengers on benches in the outside area of the bridge deck. Four stairways will bring passengers from the Roro deck to the passenger deck and three stairways will provide access from the passenger deck to the bridge deck. Two elevators will provide handicap access to all passenger decks. There will be food and beverage service with table

seating in the forward area of the passenger deck with attendant food preparation and serving spaces.

To comply with United States Coast Guard rules, 14 inflatable life rafts with a capacity of 50 persons each and two davit launched fast rescue boats will be mounted on the exterior section of the bridge deck [19]. There will be lifejackets stored in lockers around the passenger and bridge decks, sufficient to provide for all passengers, crew, and staff. There will be 16 life buoys arrayed on the roro and bridge decks. These appliances will comply with SOLAS regulations concerning lifesaving equipment [20].

B. Roro Ramp

A single hydraulic ramp is fitted to the stern for loading both automotive traffic and passengers. When deployed it will extend 3.75 meters aft of the transom and has an area of 65.8 square meters. It will be lifted and lowered by a set of direct acting hydraulic rams [21]. The port outboard area will be segregated with railings to separate pedestrian passenger boarding from car and truck loading.

Figure 23:Example Hydraulic Lift RoRo Ramp

XVII. Weight Estimates

Structural steel and aluminum weight of 975 metric tons has been generated from a Maxsurf model summation of all structural parts. Accommodations outfit weight has been estimated using a set of formulae found in Schneekluth and Bertram [22]. Machinery weight is the summation of all machines selected to be installed on the vessel.

Group	Item	Weight [mt]
Structure	Steel & Aluminum	975.550
Outfit	Accommodations	254.000
	Stern Ramp	36.000
	Anchors & Chain	49.280
	HVAC Chillers	5.194
	Other Outfit (pumps, pipes, wiring, etc.)	101.500
Machinery	Main Engines & Gearboxes	17.200
	Hotel Load Generators	2.244
	Emergency Generator	1.522
	Propulsion Shafts	48.700
	Propellers	5.206
	Bow Thrusters	11.200
Contingency	5% Lightship Contingency	75.380
	TOTAL LIGHTSHIP	1582.976

Table 17: Itemized Weight Estimate

The weight estimates are in accordance with historical data assembled by Strohbusch (1971), Schneekluth (1985) and updated by Papanikolaou [4] in table 2.1. This ferry design complies with the ranges of data for Passenger Ro-Ro, ferries/ RoPax shown in this table for ferries between 85 and 120 meters of length.

	DWT/Δ	Structural/Lightship	Outfit/Lightship	Machinery/Lightship
Range [%]	16-33	56-66	23-28	11-18
Design [%]	32.0	61.6	28.2	10.2

Table 18: Weight Estimate Ratio Comparisons

XVIII. Trim and Intact Stability Analysis

Trim and intact stability analysis was performed using the MaxSurf design suite. Since the vessel's primary route is between the US and Canada, the design was inspected in relation to both USCG intact stability requirements as defined in 46 CFR Subchapter S, as well as intact stability requirements imposed by Transport Canada. Both USCG and Transport Canada incorporate IMO IS 2008, therefore intact stability was primarily analyzed with regards to IMO regulation.

Loading conditions were analyzed for lightship, as well as a matrix that included all possible permutations of 0%, 50%, and 100% cargo; as well as 10%, 50%, and 100% consumables. For the purposes of this report, results for 0% cargo and 10% consumables will be included as a worst-case arrival condition, while 100% cargo and 100% consumables will be treated as a worst-case departure condition. 50% cargo and 50% consumables will be analyzed as an intermediate condition. These load cases are shown in conjunction with results in Appendix F.

Downflooding points were taken to be the two aft doors for passenger access, as well as a forward door on the focsle space. The ro-ro deck and focsle compartment were treated as non-buoyant volumes, as the gunwales of the hull are 3 m above the main deck.

The catamaran has a very small draft relative to the size of propellors, and for passenger comfort must be kept near 0 trim. Draft was therefore kept approximately at design draft for all load cases except worst-case arrival condition.

Due to the catamaran hull form's high beam to draft ratios, intact stability did not present issues at any of the primary loading conditions. MaxSurf Stability was used to calculate intact stability compliance

A. IMO 2008 IS Code- MSC.267(85)

A summary of applicable IMO 2008 IS regulations is presented below.

2.2.1 specifies a minimum area under the righting lever curve of 0.055 metre-radians up to 30° angles of heel (a value greater than or equal to 0.055 metre-radians), and either between 30° and 40° or between 30° and minimum angle of down flooding, whichever is less (a value greater than or equal to 0.09 metre-radians).

2.2.2 specifies that a righting lever greater than or equal to 0.2 m must be maintained for an angle of at least 30°

2.2.3 specifies that a maximum righting lever shall occur at an angle greater than 25°. A final criterion is applied that specifies a minimum initial GM greater than or equal to 0.15 m.

2.2.2 and 2.2.3 present a challenge for large beam to draft ratio vessels (such as catamarans). MSC.1/Circ. 1281 provides an alternative test whereby the max righting lever (GZ) should occur at an angle greater than or equal to 15° [23]. The area under the curve of righting arm levers should be greater than 0.070 metre-radians to an angle of 15° (when max righting lever occurs at 15°), and 0.055 metre-radians when max righting lever occurs at 30°. For angles between, values are to be interpolated based on equation. For ease of calculations, the worst case of 0.070 metre-radians was assumed.

2.2.4 specifies a minimum initial GM₀ greater than 0.15 m

2.3 provides a mechanism for analyzing severe wind and rolling criterion. Essentially, the criteria requires calculation of the area under GZ curve assuming an initial heel due to wind and wave action. Roll back from the heel is then calculated, assuming wind and wave action is released. Figure 24 graphically shows the criterion, whereby area a (area under GZ curve from heel due to rollback) must be less than area B.

3.1.1 specifies a maximum heel (10°) due to passenger crowding to one side of the vessel. The magnitude of the heeling arm was derived from the relocation of all passengers to the centroid of one-half of the vessel's passenger deck.

3.1.2 specifies a maximum

B. USCG 46 CFR Subchapter S

The main intended route for this vessel is between ports in the United States and Canada. 46 CFR 71.75-5 requires any US flagged vessel on an international voyage to have a SOLAS Passenger Ship Safety Certificate. Per USCG CFR 171.001/171.050 (c), a vessel issued a SOLAS Passenger Ship Safety Certificate must meet IMO Res. MSC.216(82) instead of any regulations contained elsewhere in the CFR. This exempts the vessel from the requirements of 46 CFR 170.170 and 170.173 (Weather Criteria, and Criterion for vessels of unusual proportion and form) [24]. Additionally, a vessel that complies with 2008 IS Code is exempt from 171.050 (Passenger heel requirements for a mechanically propelled or a non-self-propelled vessel) [25]. The vessel was analyzed for Subchapter S and passed, however as the requirements are not regulatory requirements, they will not be included in this report.

C. Transport Canada TP 7301

Transport Canada manages safety of vessels in Canadian waters, and in TP 15415 states that IMO IS 2008 is incorporated into Transport Canada regulations. TP 7301 specifies several acceptable modifications to the 2008 IS Code for near-shore vessels that are unable to meet the standards of the 2008 IS Code. As these modifications all relax the requirements of the 2008 IS Code, none were applied to this design.

D. Results

Intact Stability IS Code 2008						
Criteria	Condition					
	Arrival	Intermediate	Departure	Required	Result	
2.2.1: GZ Area 0-30 (m*deg)	181.03	174.08	165.93	3.1513 m*deg	PASS	
2.2.1: GZ Area 0-40 (m*deg)	242.25	233.44	217.23	5.1566 m*deg	PASS	
2.2.1: GZ Area 30-40 (m*deg)	61.22	59.36	51.30	1.7189 m*deg	PASS	
2.2.2 GZ Area Angle > 30 Deg (m*deg)	6.73	6.58	6.178	0.2 m*deg	PASS	
2.2.4: Initial GMt (m)	39.26	36.56	34.38	0.150 m	PASS	
2.3: Severe Wind and Rolling Ratio of Roll Area to Rollback (%)	457%	435%	365%	100 %	PASS	
2.2.3: Alt Angle of Max GZ (deg)	18.2	20	20	15 deg	PASS	
2.2.3: Alt Area of GZ Eq to Angle of max GZ (m*deg)	93.78	101.88	96.95	0.07 m*deg	PASS	
3.1.1: Passenger Crowding Angle of Eq (deg)	0.4	0.4	0.4	10 deg	PASS	
3.1.2: Turn Angle of Eq (deg)	0.1	0.1	0.2	10 deg	PASS	

Table 19: Intact Stability Results

Table 19 shows the results of intact stability at a worst-case arrival, intermediate, and worst-case departure condition. A breakdown of each of these loading conditions is shown in Appendix F. With the exception of 2.2.3 (alternate angle of max GZ), at least a 300% margin is available for all conditions. 2.2.3 should be able to be solved by utilizing ballast, if necessary, at lower displacements. This should provide adequate intact stability for all possible loading conditions.

Displacement (intact)	Draft Amidships	Trim (+ve by stern)	LCG m	TCG m	VCG m	Limit KG	min. GM	Criterion	Name
tonne	m	m				m	m		
1500	2.221	0.000	-41.211	0.000	4.584	4.584	50.098	267(85) Ch2 -	MSC 1281
								General Criteria	Alt Max GZ
1660	2.390	0.000	-41.617	0.000	7.947	7.947	43.253	267(85) Ch2 -	MSC 1281
								General Criteria	Alt Max GZ
1820	2.554	0.000	-42.024	0.000	11.014	11.014	37.246	267(85) Ch2 -	MSC 1281
								General Criteria	Alt Max GZ
1980	2.713	0.000	-42.439	0.000	13.760	13.760	32.078	267(85) Ch2 -	MSC 1281
								General Criteria	Alt Max GZ
2140	2.868	0.000	-42.865	0.000	16.214	16.214	27.624	267(85) Ch2 -	MSC 1281
								General Criteria	Alt Max GZ
2300	3.017	0.000	-43.300	0.000	17.844	17.844	24.432	267(85) Ch2 -	2.2.1: Area
								General Criteria	30 to 40

Table 20: Limiting KG at Selected Displacements

Figure 25: Graph of Limiting KG vs Displacement

XIX. Damage Stability Analysis

Damage stability analysis was conducted using both probabilistic and deterministic methods. 46 CFR 171.001 states that any vessel issued a SOLAS Passenger Ship Safety Certificate must meet the applicable requirements of IMO Res. MSC.216(82) rather than USCG damage stability and subdivision requirements laid out in 46 CFR Part 171. Resolution MSC.216(82) initially laid out concepts for probabilistic damaged stability, which were later clarified in MSC.421(98) (IMO Explanatory Notes to the SOLAS Chapter II-1 Subdivision and Damage Stability Regulations). These explanatory notes were then revised once more in MSC.421(98) Rev.1. These notes make up what will hereafter be called IMO Probabilistic Damage Stability 2020.

Although not required, the vessel was analyzed for USCG 46 CFR Part 171 compliance. Abbreviated notes will be made on these regulations, however extended calculations will not be provided. 46 CFR Part 171 includes regulations for subdivision size, as well as deterministic damaged stability.

Deterministic damaged stability was calculated with the use of MaxSurf Stability, while GHS was used to analyze IMO Probabilistic Damage Stability 2020.

A. Subdivision Requirements

46 CFR 171.060 specifies general watertight subdivision requirements. Since the ferry is intended for an international voyage, it falls under requirements for Type I subdivision

B. Probabilistic Damage Stability

Probabilistic damage stability analysis was conducted for three loading conditions, per MSC.429(98)/Rev.1 (IMO Probabilistic Damage Stability 2020). The formula for calculating probabilistic damage stability depends on calculation of a required index, and comparison against an attained index. This is tested at three drafts, corresponding to a light draft, an intermediate draft, and a heavy draft. In all cases, a test trial VCG was utilized to bring attained and required index in close proximity. In all cases, the attained index was greater than required for VCGs that are beyond any possible loading condition of the vessel.

Figure 26: GHS Model

Probabilistic Damaged Stability Per SOLAS 2020 – Variable Trial VCG							
	Trial VCG (m) Required Index Attained Index Pass/Fail						
dl	28	0.755	0.821	PASS			
dp	26	0.755	0.844	PASS			
ds	25	0.755	0.850	PASS			

Figure 27: Probabilistic Damage Stability Analysis Results

C. Floodable Length Curves

Floodable length curves for the vessel are shown in Figure 28. An additional bulkhead was added behind the collision bulkhead to ensure the vessel met two compartment standards, however because it is a catamaran, these requirements are likely overly onerous and can be relaxed for some level of weight reduction. Floodable length is calculated by removing buoyancy across the entire beam of the vessel. In a catamaran, this amounts to assuming that both hulls are penetrated from baseline to waterline simultaneously. In a vessel of 25.5 m beam with approximately 11 m of separation between the two hulls, this would be an exceptionally unlikely occurrence. This is reinforced by the probabilistic damage stability results shown in **Error! Reference source not found.**. Prior to adding the additional forward bulkhead, the vessel still passed with trial VCGs of 25 m.

Figure 28: Floodable Length Curves

XX. Endurance and Bunkering

A. Fuel

Operating at 85% load, four MTU 16V 2000 M72 main engines will burn 0.986 metric tons of fuel per hour [26]. The Caterpillar C9.3 generators will consume 0.123 metric tons of fuel per hour at full hotel load [27]. The total consumption for each hour of ferry operations will total 1.109 metric tons per hour. With a 15% safety factor this gives a total consumption rate of 1.44 metric tons per 22.6 nautical mile trip. The trip frequency varies from four trips per day in winter to eight in the summer months. The ship will carry 116 mt of marine diesel oil when all tanks are full. This will provide 84 total trips per bunker period and an endurance of 1820 nautical miles. Given these parameters the following table shows the required refueling periods for the ship under various seasonal operating scenarios.

	Seasonal Scenario					
	Winter	Spring & Fall	Summer			
	4 trips/day	6 trips/day	8 trips/day			
Fuel Burn/day [mt]	5.77	8.65	11.53			

Table 21:Fuel	Bunkering	Periods
	D di i i i i i i i i i i	

Bunker Period	20	13	10
[days]			

B. Lube Oil

The MTU 16V 2000 M72 main engines do not require a through flow lube system. The oil change interval is every 1500 hours with an oil volume of 113 liters per engine [26]. For the Caterpillar C9.3 gensets, the oil change interval is every 500 hours and the volume is 30 liters per engine [27]. With a total lube oil capacity of 3136 liters, the ship will carry 5 oil changes for the main propulsion engines and 30 for the generators. The waste oil tank holds 782 liters and every 1500 hours oil changes will generate 632 liters. The waste oil will need to be discharged 5 times per lube oil bunkering period.

Table 22:Lube and Waste Oil Periods

		Seasonal	
	Scenario		
	Winter	Spring & Fall	Summer
	4 trips/day	6 trips/day	8 trips/day
Lube Oil Fill [days]	1650	1110	825
Waste Oil Discharge	330	220	165
[days]			

XXI. Seakeeping Analysis

A. Sea State

The sea state assessment comes from data collected at the New Dungeness Buoy Station 46088, located in the Strait of Juan de Fuca 17 NM northeast of Port Angeles [28]. It lies within 5 NM east of the path of the ferry route under consideration and is representative of the conditions that will be experienced by the ferry design. December has historically been the most severe sea state conditions of the year, with a significant wave height of 3.5 meters. Waves of this size would require that this ferry design be assessed at Sea Stage 6 on the Beaufort scale. Winds of 21-26 knots, with waves varying between 3 and 4 meters

are characteristic of this sea state. Long waves are beginning to form. White foam crests are very frequent and there will be some airborne spray.

Figure 29: Mean and Standard Deviation Plot of Significant Wave Height [28]

Figure 30: Mean Standard Deviation for Average Wave Period [29]

B. Criteria

The American Bureau of Shipping publishes a "Guide for Passenger Comfort on Ships" which, along with Motion Sickness Index data from a MaxSurf model, form the criteria for assessing the seakeeping ability of this design [30].

Notation	Frequency Range	Acceleration Measurement	Maximum RMS Level
COMF	1-80 hz	Frequency rated RMS	71.5 mm/s2
COMF +	0.1-0.5 hz	Motion Sickness Dose Value	30 m/s2
	1-80 hz	Frequency rated RMS	71.5 mm/s2

The Motion Sickness Index (MSI) rates the percentage of passengers who will experience motion sickness during a given exposure time. The MaxSurf model shows criteria by wave encounter frequency.

C. Model Results

While ABS requires that these data be collected from a ship in trials or service, these values can be compared to those generated by the MaxSurf Motions to assess the suitability of this design to the intended seaway. The table below shows two wave approach directions, a head sea and the worst-case scenario of a 45-degree rear quartering sea. Five locations on the ship were modelled.

Location	Heave (mm/s2)	Pitch (mm/s2)	Roll (mm/s2)
Head Sea			
Roro Deck Aft	28	2.0	0
Roro Deck Bow	47	2.0	0
Passenger Deck Bow	59	1.0	0
Passenger Deck Aft	5.0	1.0	0
Bridge Deck	47	5.0	0
45-degree Rear Quarter	Heave (mm/s2)	Pitch (mm/s2)	Roll (mm/s2)
Roro Deck Aft	29	2.0	1.0
Roro Deck Bow	44	2.0	1.0
Passenger Deck Bow	50	1.0	1.0
Passenger Deck Aft	11	1.0	1.0
Bridge Deck	44	5.0	3.0

Table 24: Maximum RMS Accelerations at 20 knots for Sea Stage 6

The graph below represents the worst-case scenario, a 45-degree rear quartering sea. MSI discomfort limits are displayed along with the calculated MSI values for five locations on the ship. The comfort limits are clearly shown, the results of the model for this design are all clustered at the lower left of the graph, demonstrating that the design in sea state 6 does not approach limits for the Motion Sickness Index.

Figure 31: MSI Limits and Calculated Values at 20 knots in a Rear Quartering Sea

D. Conclusions

The ship is within ABS acceleration limits of 71.5 mm/s2 in all cases tested and at maximum speed during seat state 6 and in all five locations examined on the ship. The catamaran design exhibits some heave and pitch motions, but even in a beam sea, almost zero rolling acceleration. The Motion Sickness Index generated by the model shows that all locations on the ship are far below threshold values that would generate motion sickness, regardless of the incident wave direction. Absolute vertical displacement of the locations examined indicate that at sea state 6 there will be no sea water breaching the transom or bow, with the Roro deck remaining dry.

XXII. Crew manning estimates

The crewing requirements for this ferry will include deck crew, engineering crew and a small service staff. Since there are no staterooms the only necessary service personnel will be those operating the food service. The current one-way passage requires 90 minutes at a service speed of 15 knots. The design under consideration will increase service speed

to 18 knots, reducing voyage time by 75 minutes. Eight trips per day can be performed by a single crew in 10 hours. The estimated crew compliment is shown in the following table.

Position	Number
Master	1
Deck Officers	6
Chief Engineer	1
Engineers	6
Total Crew	14
Food Service Staff	6
Total on Ship	20

Table 25: Crew and Service Staff

XXIII. Cost, Rates and Profit Analysis

A. Capital Expenditure

Two methods for estimating the cost of construction have been used for this design. The initial parametric model is based on "Preliminary Ship Cost Estimation" by J. Carreyette . This method is based on structural steel weight and outfit weight. The cost of labor, materials and outfit were inflated to present day values. This paper envisions estimating the cost of construction of monohull vessels made exclusively of steel. It represents labor costs in England during the 1970's. While labor costs have been inflated, there are discrepancies between construction of ships in developed economies and manufacturing in lower labor cost environments. The design being considered has both steel hull construction and aluminum superstructure. The labor costs of aluminum manufacturing can be highly variable depending on shipyard experience and equipment. The most of aluminum material is higher than similar structures built of steel. For these reasons, the cost estimate may not be accurate and presents some risk.

Using the parametric model and the Carreyette method, the estimated capital cost of this design is \$33.42 million. This is based on a length of 90 meters, a structural weight of 951 metric tons of steel, 446 metric tons of outfit, a block coefficient of 0.62 and a total propulsive power of 5760 horsepower. These are the principal inputs into the Carreyette estimation method. Labor costs were estimated at \$20.43/hr for tradesmen with an

overhead of 100%. Labor costs are below market rates for developed economies, but are representative of costs in lower wage nations.

Figure 32: Breakdown of Capital Expenses

The second approach to cost estimation was to examine build costs of currently operating low speed catamaran ferries. The Sea Transport company in Australia has designed dozens of this type of ferry and overseen construction in various locations, both in Australia and in lower labor cost nations. There is limited information related to the build costs of these ferries. A regression analysis was attempted relating ferry length to cost with inconclusive results. From the available data, most of these ferries cost around \$20 million in 2023 U.S. dollars, independent of length for ships from 60 to 85 meters. This may be a result of variable labor costs and skill levels. These costs are lower than the Carreyette estimate derived from the parametric model.

Ferry Name	Length [m]	Dead Weight [mt]	Build Cost [2023 1000's US\$]
Lite Cat 2	60.6	340	10.35
Galleons Passage	73.9	477	22.09
Pentalina	68.9	475	22.08
Ivete Sangalo	49	unknown	23.55

Table 26: Length, Deadweight Tonnage and Build Cost of Comparable Catamarans

Alfred 84.5 550 19.18				
	Alfred	84.5	550	19.18

Considering what the other low speed catamarans cost to build, there is confidence that this design can be built in a low labor cost environment for less than the Carreyette method estimate. The value generated by this method has been used in all calculations of annualized capital expenses and is likely a conservative estimate.

B. Operating Expenses

Annual operating expenses were estimated from the sum of annualized capital expenses, fuel and lube oil usage, crewing costs, insurance, maintenance and repair, port fees, and sewage pump fees. Annualized capital expenses are derived from the total build cost of the vessel and its 25-year expected service life. Considering the advanced age of the ferry currently in use, this may underestimate the vessel's service life.

Port fees are assigned because the catamaran design may require alteration of the current Victoria facilities. As the current ferry has a starboard side loading ramp and the design under consideration has only a stern ramp, dock reconstruction will be necessary.

Fuel and lube oil consumption is based on engine and genset manufacturer data. Crewing costs assume an average of \$80,000/year for 20 crew members with a 100% overhead allowance. Insurance has been estimated from a Drewry Maritime Research Ship Operating Costs Annual Review from 2012, inflated to 2023 \$US [31]. Maintenance and repair costs are derived from the same paper and similarly inflated. Sewage disposal fees are from estimates for disposing of sewage in the Port of Seattle for the Washington State Ferry System. The total annual cost of operating this ferry design across the Strait of Juan de Fuca is \$9.03 million

Figure 33: Annual Operating Expenses

C. Rates

Based on the operating and construction expenses of this design, the parametric model dictates a required rate of \$0.83 per passenger for each nautical mile of the 22.6 nautical mile route. For automotive traffic, the required rate is \$0.62 per lane meter per nautical mile. The 2024 Black Ball Ferry line rates listed on the website yield \$0.97/ passenger-NM and \$2.26/ lane meter-NM. The ferry schedule varies from 4 trips per day in winter months to 8 trips per day in summer months, with 6 trips per day during spring and fall.

D. Profit Analysis

Assuming an 8% interest rate, this design will achieve positive cash flow in approximately 7 years with the current 30% utilization rate. This utilization rate is based on the current load of about 400,000 passengers per year and assuming a similar utilization rate for the automotive capacity [32]. This does not include any income that might be made by leasing or operating the food service, government subsidies for covering this route, increases in ferry rates over time, or changes in capacity utilization. After the payoff period operating on the Port Angeles to Victoria route, assuming constant expenses and rates, the total profit per year is \$6.55 million, and the cumulative profit after 25 years will be \$114.8 million.

Figure 34: Payoff Period and Capacity Utilization

XXIV. Passenger Risk Assessment

A. Passenger and Ship Safety

There are inherent risks to taking passengers and vehicles on board an oceangoing vessel. The physical ability of passengers varies and the design under consideration requires pedestrian boarding vessel via the Roro ramp. While this process can be acceptable to both ambulatory and handicapped customers, the incline of the ramp could present problems for both groups. Slip/fall injuries can be a cause of passenger injury. Adequate makings, railings and non-skid surfaces should guide movements to prevent injury and mitigate the risk of passengers going overboard. Separation of passenger and vehicle loading physically or temporally is necessary to prevent car/truck strike accidents with pedestrians. Loading vehicles can be accident prone, even with guidance from experienced crew members. Backing trucks onto the vessel requires competent operators and an orderly plan for queuing and loading. Pedestrian and motorized loading risks can be mitigated with adequate crew training and staffing. As the ferry currently in service provides multiple ramps with drive-through capabilities, this design would require new dockside arrangements for waiting vehicles. Provision of life saving equipment will be required to meet SOLAS regulations and secure passenger safety in cases of passengers overboard and ship wide emergencies.

There is a risk of collision and allision with the ship. Docking maneuvers and port operations can place the vessel at risk of collision with stationary objects and other ships. Proper crew training and carefully designed port facilities and schedules can mitigate these risks. Restricting operations to weather conditions appropriate for the vessel design will reduce the danger of collisions and groundings. In the worst case of the ship sinking and requiring abandonment, life preserving equipment in adequate amounts will be included in the safety gear on the vessel. This will include life jackets for all passengers and crew, inflatable lifeboats with enough capacity to carry all persons on board, and a rescue boat.

Fire is a risk when operating any ship, especially when carrying automobiles and trucks. There is a risk that some trucks will be carrying flammable or hazardous materials. The risk of fire spreading and destroying the ship will be mitigated by a firefighting system compliant with relevant SOLAS regulations and crew trained to fight fires.

B. Structure and Weight Estimate

ABS design and class requirements stipulate the use of a Finite Element Analysis to determine the structural integrity of the bridging structure between the demi hulls. There are moments and loads which are specific to catamaran designs that are not present in monohull arrangements. These are moments generated by prying and squeezing of the hulls, yaw moments splitting the hulls apart, pitch torsional moments as one hull rises while the other falls, and the longitudinal bending moment. The following loading forces must also be considered in this FEA analysis: side force applied by wave motions and lateral movement of the ship, transverse vertical shear on the longitudinal plane and longitudinal vertical shear in the transverse direction.

An FEA analysis has not been performed on the bridging structure of this design. This may necessitate additional structural elements between the wet and Roro decks to reinforce this area against the moments and forces. This will affect, and likely increase, the structural and lightship weight of the vessel producing follow on effects on draft, resistance, and power requirements.

C. Powering and Resistance

Powering requirements have been estimated using Simerics computational fluid dynamics (CFD) and verified using NavCad and the Holtrop method. The design maximum speed of 20 knots places the ship on a plateau in the speed/power curve. This has given some confidence that the resistance and power requirements of the vessel are appropriate for this operational speed. It has been observed from a series of CFD simulations that lowering the speed to 18 knots results in dramatically reduced power requirements and certain compliance with EEDI Phase III regulations.

D. Port Facilities and Roro Loading

The current Black Star Ferry Line ship plying this route loads automotive traffic through a stern ramp and side ramp. Our ferry design specifies only a stern ramp. This arrangement will require an upgrade to the current port facilities and backing trucks on or off the ship. Port facility upgrades are costly and not included in the build cost of the vessel. The design envisions either rebuilding the traffic ramp at the Victoria terminus to accept stern loading or the inclusion of a complex Roro ramp that can accommodate straight loading at one port and right angle loading at the other. Adding a side ramp to our design is problematic as there is insufficient vertical clearance to drive trucks under the passenger deck and off the side of the ship. Either the complex ramp or upgrades to port facilities will add cost to this project.

E. Economic Considerations

Our build costs estimates are based on the Carreyette method of estimation and checked against a regression analysis of build costs of similar low speed catamaran designs. These may result in inaccurate estimates of construction costs. The Carreyette method was developed for steel monohull vessels and may have limited application to twin hull catamarans. Additionally, our design incorporates a steel structure from the Roro deck to the baseline and an aluminum superstructure. Aluminum materials and welding are more expensive than steel and vary considerably depending on the experience and skills of the shipyard. The build cost estimate may be increased or decreased by these uncertainties.

Assumptions have been made regarding the interest rate environment and capacity utilization of this ferry route. The parametric model assumes an interest rate of 8%. This rate could vary depending on current rates and the creditworthiness of the borrower. The model assumes a capacity utilization of 50% or greater. If that figure falls to 25% for an extended duration, this design is no longer profitable and will lose money year over year. As the Black Ball Ferry Line Is a private company occupancy rates are not available to the public, so the risk to economic viability due to unknown capacity utilization is difficult to assess.

F. Oil and Fuel Spills

Ferry operations, especially bunkering operations, present a risk of oil and fuel entering the water. Collisions and allisions also may present a risk of spills. These risks can be mitigated with careful and professional fueling operations. Spill response kits will be included in the safety gear present on the ship to deal with smaller spills.

XXV. Works Cited

- [1] SNAME, Ship Design and Construction: Volume 2, T. Lamb, Ed., Jersey City: The Society of Naval Architects and Marine Engineers, 2004.
- [2] carsguide, "Honda Accord Dimensions 2021," carsguide, CarsGuide Autotrader Media Solutions Pty Ltd.. [Online]. Available: https://www.carsguide.com.au/honda/accord/cardimensions/2021. [Accessed 07 04 2024].
- J. Henry, "Light Trucks Now Outselling Cars 3-to-1," Forbes Wheels, 03 01 2022. [Online].
 Available: https://www.forbes.com/wheels/news/light-trucks-now-outselling-cars/.
 [Accessed 2024 07 04].
- [4] A. Papanikolaou, Ship Design: Methodologies of Preliminary Design, Dordrecht: Springer, 2014.
- [5] A. F. Molland, J. F. Wellicome and P. R. Couser, "Resistance Experiments on a Systematic Series of High Speed Displacement Catamaran Forms: Variation of Length-Displacement Ratio and Breadth-Draught Ratio," University of Southampton Department of Ship Science, Southampton, 1994.
- [6] American Bureau of Shipping, "Requirements for Buildinig and Classing SWATH Vessels," January 2024. [Online]. Available: https://ww2.eagle.org/content/dam/eagle/rules-andguides/current/special_service/324-requirements-for-building-and-classing-swathvessels-2024/324-swath-reqts-jan24.pdf. [Accessed 1 April 2024].
- [7] Amercian Bureau of Shipping, "Rules for Building and Classing Marine Vessels Notices and General Information," January 2024. [Online]. Available: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/other/1-rules-forbuilding-and-classing-marine-vessels-2024/1-mvr-nandgi-jan24.pdf. [Accessed 1 April 2024].
- [8] Society of Naval Architects and Marine Engineers, Ship Design and Construction, Volume II, vol. II, T. Lamb, Ed., Houston, Texas: Society of Naval Architects and Marine Engineers, 2003, p. 1131.
- [9] U.S. Coast Guard Marine Safety Center Plan Review Guideleni, "Review of Blalast and Bilge Systems," 10 July 2020. [Online]. Available:

https://www.dco.uscg.mil/Portals/9/MSC/PRG/PRG.E1-02.2020.07.10.Bilge_and_Ballast_Systems.pdf. [Accessed 10 April 2024].

- [10] Wartsilla, "Wartsilla Encyclopedia of Marine and Energy Technology Bow Thruster,"
 Wartsilla, [Online]. Available: https://www.wartsila.com/encyclopedia/term/bow-thruster.
 [Accessed 1 April 2024].
- [11] PT. Marine, "PT. Marine Proplusion Solutions Tunnel Thruster Systems," [Online]. Available: https://marinepropulsionsolutions.com/standard-transverse-thrusters/. [Accessed 1 April 2024].
- [12] Heinan & Hopman, "Heinan & Hopman Maritime Absorption Chiller Products," [Online]. Available: https://www.heinenhopman.com/products/absorption-chiller/. [Accessed 1 April 2024].
- [13] Kawasaki, "Swash-plate Type Axial Piston Pump K3VL Series," 5 November 2021. [Online].
 Available: https://www.kawasakihydraulics.com/app/uploads/2021/10/K3VL-EX Datasheet-010.21.pdf. [Accessed 10 April 2024].
- [14] Caterpillar, "Marine Gnerator Sets C9.3 Marine Generator Set," Caterpillar, 2024. [Online]. Available: https://www.cat.com/en_US/products/new/power-systems/marine-powersystems/marine-generator-sets/1000015320.html. [Accessed 10 April 2024].
- [15] Caterpillar, "Product Specifications for C7.1 (Electronic Control System) Generator Set Specifications".
- [16] Safety of Life at Sea, "SOLAS 74/78 Chapter II-1 Part B Electrical Installations," International Convention for Safety of Life at Sea, 2002.
- [17] Marhy Renk, "MARHY Maritime hybrid drive," 2024. [Online]. Available: https://www.renk.com/en/products/marine/hybrid-electric-solutions/marhy. [Accessed 1 April 2024].
- [18] Sotra Anchor & Chain, "Recomended Volume of Chain Locker," Sotra Anchor & Chain, [Online]. Available: https://www.sotra.net/?produkter=recomended-volume-of-chainlocker. [Accessed 11 April 2024].
- [19] United States Department of Homeland Security, *46 U.S.C 2104, 3306, E.O/12234, 45 FR 58801, 3CFR , p.277,* United States Code, 1980.

- [20] M. Ventura, "Safety of Life at Sea, 1974 (SOLAS)," 1974. [Online]. Available: http://www.mar.ist.utl.pt/mventura/projecto-navios-i/en/sd-1.2.4-solas-iiilifesaving.pdf#:~:text=%E2%80%A2%20Liferafts%20shall%20be%20served%20by%20em barking%20ramps,crews%20duly%20trained%20and%20submitted%20to%20regular%20 exercises. [Accessed 30 April 2024].
- [21] MacGregor, *MacGregor Stern Ramp Brochure*, Gothenburg, Sweden: MacGregor Sweden AB, 2014.
- [22] H. &. B. B. Scheenkluth, Ship Design for Efficiency and Economy (2nd edition), Butterworth-Heinemann, 1998.
- [23] International Maritime Organization, "International Registries," 04 12 2008. [Online]. Available: https://www.register-iri.com/wp-content/uploads/MSC.26785.pdf. [Accessed 2024 14 04].
- [24] Department of Homeland Security, "46 CFR Part 170 Subpart E," USCG, 14 03 2011.
 [Online]. Available: https://www.ecfr.gov/current/title-46/part-170/subpart-E. [Accessed 14 04 2024].
- [25] Department of Homeland Security, "46 CFR Part 171 Subpart B," USCG, 14 12 2010.
 [Online]. Available: https://www.ecfr.gov/current/title-46/part-171/subpart-B. [Accessed 14 04 2024].
- [26] MTU Rolls Royce, Operating Instructions Diesel Engine 12V 2000 M72 16V 2000 M72
 M015850/03E, Germany: MTU Friedrichshafen Gmbh, 2011.
- [27] Caterpillar, "C9.3 Marine Generator Set Commercial Applications," Caterpillar, 2023.
- [28] National Atmospheric and Oceanic Administration, "Station 46088 Climatic Summary Plots for significant wave height," 2008. [Online]. Available: https://www.ndbc.noaa.gov/view_climplot.php?station=46088&meas=wh. [Accessed 10 April 2024].
- [29] National Atmospheric and Oceanic Administration, "Station 46088 Climatic Summary Plots for average wave period," 2008. [Online]. Available: https://www.ndbc.noaa.gov/view_climplot.php?station=46088&meas=wa. [Accessed 10 April 2024].
- [30] American Bureau of Shipping, *Guide for Passenger Comfort on Ships*, Spring, TX: American Bureau of Shipping, 2023.

- [31] Drewry, "Report of Ship Operating Expenses," Drewry, 2012.
- [32] P. Gottlieb, "Upgrades for both ends of MV Coho will idle ferry for two months in winter," *Pennisula Daily News,* 12 July 2015.
- [33] J. Carrreyette, "Preliminary Ship Cost Estimation," in *The Royal Institution of Naval Arhitects*, London, 1977.
- [34] J. Holtrop and G. J. Mennen, "An Approximate Power Prediction Method," *International Shipbuilding Progress*, vol. 31, no. 363, p. 8, 1978.
- [35] Ford Motor Company, "2024 F-150 XLT," 2024. [Online]. Available: https://www.ford.ca/trucks/f150/models/f150-xlt/. [Accessed 07 04 2024].
- [36] Transport Canada, "TP 7301 Canadian Modifications to the International Code on Intact Stability, 2008," Government of Canada, 16 01 2024. [Online]. Available: https://tc.canada.ca/en/marine-transportation/marine-safety/marine-safetypublications/tp-7301-canadian-modifications-international-code-intact-stability-2008. [Accessed 14 04 2024].
- [37] E. V. Lewis, Principles of Naval Architecture, Volume III, Jersey City: Society of Naval Architects and Marine Engineers, 1989.

Appendix A: General Arrangement and Lines Plan

PRINCIPAL						
PARTICULARS						
LOA	92.0	m				
LBP	90.0	m				
В	25.57	m				
Т	3.0	m				
D	10.0	m				
DISPLACEMENT	2282	MT				
DEADWEIGHT	730	ΜT				
DESIGN SPEED	18	kt				
INSTALLED POWER	5760	kW				
CB (DEMI-HULL)	0.59					
CAR LANES	525	m				
PASSENGERS	650					
CREW	18					

MIDSHIP

IARYLLIS DESIGN	m RO-P	AX CATAMARAN
DRAWING:	General a	RRANGEMENT
SHEET:	PROFILE A	ND MIDSHIP
REVISION: 1		SHEET: 1/4
SCALE: 1:2	70	DATE: 5/7/2023

TANK TOP

ARYLLIS DESIGN	project: 90 m RO-PA	X CATAMARAN		
ALLIS DES	drawing: GENERAL ARRANGEMENT			
	sheet: TANK TOP			
	REVISION: 1	SHEET: 4/4		
Ime Naval Nich	SCALE: 1:360	DATE: 5/7/2023		

* WATER BALLAST TANK (100% FULL)

ΝΑΜΕ		POSITION	CAPACITY	WEIGHT	LCG	TCG	VCG
		(FRAME)	m ³	M.T.	m	m	m
гот	Ρ	-1.5-4	54.09	55.44	-2.78	-9.12	3.31
	S	-1.5 - 4	54.09	55.44	-2.78	9.12	3.31
	Ρ	15-26	79.86	81.85	-25.85	-9.14	0.83
SWDII	S	15-26	79.86	81.85	-25.85	9.14	0.83
CWDTO	Ρ	26-39	108.33	111.04	-40.74	-9.16	0.84
SWDIZ	S	26-39	108.33	111.04	-40.74	9.16	0.84
CWDTZ	Р	39-50	84.86	86.99	-55.14	-9.07	0.86
30013	S	39-50	84.86	86.99	-55.14	9.07	0.86
SWDTA	Ρ	50-61	45.78	46.93	-67.59	-9.29	1.04
SWD14	S	50-61	45.78	46.93	-67.59	9.29	1.04
ADT	Ρ	61-72	231.16	236.94	-83.92	-8.96	3.51
	S	61-72	231.16	236.94	-83.92	8.96	3.51

* MARINE GAS OIL TANK (98% FULL)

ΝΑΜΕ		POSITION	CAPACITY	WEIGHT	LCG	TCG	VCG
		(FRAME)	m ³	M.T.	m	m	m
MCO	Ρ	21-26	46.55	39.10	-29.38	-9.15	2.48
MGO -	S	21-26	46.55	39.10	-29.38	9.15	2.48
SETT -	Ρ	40-41	5.42	4.55	-50.63	-8.22	2.48
	S	40-41	5.42	4.55	-50.63	8.22	2.48
SERV	Ρ	42-43	5.42	4.55	-54.00	-8.22	2.48
	S	42-43	5.42	4.55	-54.00	8.22	2.48

*LUBE OIL TANK (98% FULL)

NAME		POSITION	CAPACITY	WEIGHT	LCG	TCG	VCG
		(FRAME)	m ³	M.T.	m	m	m
LUBE P	Ρ	40-41	1.40	1.29	-50.63	-10.85	2.48
	S	40-41	1.40	1.29	-50.63	10.85	2.48
WASTE	Ρ	42.5-43	0.41	0.38	-53.88	-10.85	1.99
	S	42.5-43	0.41	0.38	-53.88	10.85	1.99

*BILGE TANK (100% FULL)

ΝΑΜΕ		POSITION	CAPACITY	WEIGHT	LCG	TCG	VCG
		(FRAME)	m ³	М.Т.	m	m	m
	Ρ	46-49	1.09	1.09	-59.38	-10.81	1.00
	S	46-49	1.09	1.09	-59.38	10.81	1.00
	Ρ	51-54	1.09	1.09	-65.63	-7.48	1.00
CLNZ	S	51-54	1.09	1.09	-65.63	7.48	1.00
	Ρ	46-49	5.38	4.91	-59.38	-9.90	1.00
ULTI	S	46-49	5.38	4.91	-59.38	9.90	1.00
OILY2	Ρ	51-54	5.38	4.91	-65.63	-8.39	1.00
	S	51-54	5.38	4.91	-65.63	8.39	1.00

* WATER HOLDING TANK (100% FULL)

NAME		POSITION	CAPACITY	WEIGHT	LCG	TCG	VCG
		(FRAME)	m ³	M.T.	m	m	m
FWT	Ρ	27-30	8.00	8.00	-35.63	-9.14	2.03
	S	27-30	8.00	8.00	-35.63	9.14	2.03
BWT	Ρ	15-20	40.00	40.00	-21.88	-9.15	2.50
	S	15-20	40.00	40.00	-21.88	9.15	2.50

AMARYLLIS DESIGN NAVAL ARCH	PROJECT: 90 m RO-PA	AX CATAMARAN	
	DRAWING: CENIEDAI AD		
ALLIS DES	GLINLINAL AI	INANGLIVILINI	
	SHEET: CAPACITY PLAN		
	REVISION: 1	SHEET: 4/4	
lime Naval Pice	SCALE: 1:360	DATE: 5/7/2023	

AMARYLLIS DESIGN NAVAL ARCH	PROJECT: 90 m RO-PA	X CATAMARAN
RYLLIS DES	UKAWING: GENERAL AR	RANGEMENT
	LINES PLAN	
The New Ment	REVISION: 1	SHEET: 2/4
""" Naval "	SCALE: 1:100	DATE: 5/7/2023

Appendix B: Initial Design: Vessel DWT Regressions

Figure 35: DWT as Function of Car Capacity - Monohull

Figure 36: DWT as Function of Car Capacity - Catamaran

Appendix C: Economic Parametric Models

1.	Design	Inputs/Ecor	nomic Outputs

	Design Inputs			Financial Outputs	
Length BP	90.0	[meters]	Total CapEx	\$33,423,635.29	
Weight of Steel	3020	[tonnes]	Annualized CapEx	\$3,062,691.45	
Weight of Outfit	446	[tonnes]	Annual Opex	\$9,032,224.48	
Propulsion	5760	[kW]	Total Annual Costs	\$12,094,915.93	
Block Coeff (Cb)	0.62			Required Rates	
Fuel Burn Rate	1.321	[mt/hour]	Min Passenger Rate	\$18.75	[per passenger]
Number of Crew	20	[persons]	Min Lane-meter Rate	\$14.02	[per lane meter]
Operating Days/Year	350	[days]			
Trips/day	6	[trips]	Min Rate/ Pass-nm	\$0.8296	
Distance/trip	22.6	[nm]	Min Rate/ Lane-m-nm	\$0.6204	
Occupancy	30%				
MARR	8%				

81

2. Capital Expenses

Capital Expenditure Cost Estimates

The methods and values in this` sheet are derived from "Preliminary Ship Cost Estimation" by J. Carryette, 1977, The Royal Institute of Naval Architects
Adapted With Inflation

Design (Outputs											
Total CapEx	\$	32,181,249.76										
Annualized CapEx		\$2,946,306.29										
	Inp	uts										
Length BP		90	[meters]									
Weight of Steel		2071.106552	[tonnes]									
Weight of Outfit		446	[tonnes]									
Propulsion		5760	[hp]	19	4295.232	[kW]						
Block Coeff (Cb)		0.62										
				•								
			Inflation Rate	Years (19	77-2023)							
Inflation Since 1977	Materia	als	3.00%		46							
	Labor		3.50%		46							
	Machin	ery	1.00%		46							
Steel	Cost											
Weight of Steel		2071.106552		Tables Ada	pted From	n Carryette	- Appendi	x II				
8'		1241									Values Used	
Steel Materials	\$	2,569,355.53		Table II		Values of /	A'					
				Average W	age Rate	of Direct La	bor				Overheads	
Steel Constru	uction La	abor		per hour		1977 \$/hr		2023	\$/hour	75%	100%	125%
A' or K value		6814		£	1.60	\$	2.80	\$	13.63	5962	6814	7665
Weight of Steel		2071.106552	[mt]	£	2.00	\$	3.50	\$	17.03	7453	8517	9582
Length BP		90	[m]	£	2.40	\$	4.20	\$	20.44	8943	10221	11498
Block Coeff (Cb)		0.425675263										
Steel Labor Cost	\$	11,655,247.79		Table III		Values of I	В'					
				Average Pr	ice of Ship	obuilding St	eel			Wasta	age + Welding Roo	ds
Outfit	Costs			per mt		1977 \$/mt		2023	\$/mt	7.50%	10%	12.50%
C		81338.75314		£	150.00	\$	262.50	ş	1,022.45	1213	1241	1268
Weight of Outfit		446		£	200.00	5	350.00	\$	1,363.27	1618	1654	1690
Outit Labor	\$	4,748,109.76		£	250.00	\$	437.50	Ş	1,704.08	2022	2068	2113
Outfit Materials		\$6,113,604.14		T . 1.1. D.								
Total Outfit Costs	\$	10,861,713.90		Table IV		values of 0					a	
Machine	n Coste			Average W	age Kate	1077 C/br	DOr	2022	Chour	750/	Overheads	1259/
E' Machinery Labor	ry costs	2142		pernour	1 60	¢	2 90	2025 ¢	12.62	71110	91220	01550
F Machinery Labor		3143		E C	1.60	2	2.80	Ş	13.63	/1118	81539	91559
6' Machinery Material		2/10		E C	2.00	2	3.50	\$	20.44	10437.5	14225	15437.5
Propulsion		5760	[ho]	-	2.40	2	4.20	2	20.44	12525	14323	10125
Machineny Costs	ć	7 004 022 52	(TP)	Table V		Values of I	D'	Outfi	t Materials			
watchinery costs	ş	7,034,332.33		Date		values of t		Outin	it materials			
				Date	1975	£	1 500 00	¢	2 625 00			
Labor Costs	S	20 212 848 47			1976	f	1,725.00	ŝ	3.018.75			
Material Costs	-	\$11,968,401,30			1977	f	2.011.00	š	3,519,25			
Total Costs	\$	32,181,249,76			2023	f	7 832 93	s	13,707,63			
Total Costs		52,101,245.70			2025	-	1,032.33	*	13,707.03			
interest		8%		Table VI		Values of I	F'					
period		25	vears	Average W	age Rate	of Direct La	bor				Overheads	
used value	Ś	(5.000.000.00)		per hour	- or many	1977 \$/ho	ur	2023	\$/hour	75%	100%	125%
Annualized Cost		\$2,946,306.29		£	1.60	\$	2.80	\$	13.63	2751	3143	3535
				£	2.00	\$	3.50	\$	17.03	3439	3929	4418
				£	2.40	\$	4.20	\$	20.44	4127	4714	5302

Categories		Table VII	Val	ues of G'	Machinery Materials		
Steelwork	Outfit	Date	G'				
Hull	Structural forgings	1975	£	735.00	\$	1,286.25	
Superstructure	castings	1976	£	845.00	\$	1,478.75	
bulkheads	smithwork	1977	£	980.00	\$	1,715.00	
bulwarks	sheet iron work	2023	£	1,548.85	\$	2,710.49	
machinery seats	carpentry piping outside ER						
Machinery	electrics outside ER	steel	\$	2,569,355.53			
Main and auxilary	painting	structural labor	\$	11,655,247.79			
generators	deck coverings	machinery	\$	7,094,932.53			
ER electrics	insulation	outfit	\$	10,861,713.90			
ER pumps	accomodation	Total CapEx	\$	32,181,249.76			
ER piping	windows						
compressors	doors						
Aux Boilers	firefighting	steel	\$	2,569			
Funnel	galley	structural labor	\$	11,655			
Shafting	refrigeration	machinery	\$	7,095			
Propellers	HVAC	outfit	\$	10,862			
Thrusters	accomodation	Total CapEx	\$	32,181			
Stabilizers	steering gear						
	anchors						
	cables	C	ape	Categories (1000	's)	
	deck machinery			ste	el		
	derricks and cranes			\$2,5	69		
	hatch covers		/				
	lifesaving appliances						
	nautical instruments		out	fit aco			
	helder researches		\$10,	002		1	

bridge consoles

stores sundries

Methods of Outfit Weight Estimation

structural labor

\$11,655

machinery \$7,095

Outfit Weight	Schneekluth and Bertram			
k	0.045			Volume
converted volume	3755.051991 m3	coeff	0.282472787	8675.5
outfit weight	168.9773396 mt			3279
				1339
				13293.5
Outift weight	Schneekluth and Bertram		gross tonnage	3755.052
	975 mt			
c	1.6			
weight of outfit	156.0 mt			
Outfit Weight	Schookluth and Bertram			
area of pars/bridge	1520 42			
area or pass/orluge	254.00505 mt			
weight accomodations	for accompositions			
Total Outfit weight	410.0			
rotal Outint Weight	410.0			

3. Annual Operating Expenses

Design Inputs Output Value

Fuel Burn Rate		[mt/hour]	Total Annual Opex
Number of Crew	1.321363233		<mark>\$ 9,032,224.48</mark>
Operating		[persons]	
Days/Year	20		Annual Operating Expenses
Trips/day			(1000's)
Distance/trip	350		50mg0 - \$400
Operating Parameter	s		M&R annual Capex
	-		Crew fruet & lube
Days Operating/year	350		CUSIS
Trips/day	6		Insurance
Distance/trip	22.6	6 [nm]	
Vessel Speed Vk	18	[knots]	
Total Trips	2100		
Total Miles	47460)	
Total Hours	2636.66666	57	
Fuel and Lube Oil			
Fuel Burn Rate	1.32136323	3 [mt/hour]	1136.37238
Fuel per vear	3483 99439	91 [mt]	1100.07200
Fuel MGO	¢	[\$/ton	
Cost Total	270.0	1	
Eugl Cost	0		
Lubo Oil	Ś	[\$/yea	
Lube Oli	940.678.	rj	
Cost	49	[\$/ton	
	Ś]	
	1,000.		
	00		
Luka Ol Dura Data	0.011) [taua/ha]	
Total Lube Oil Cast	U.UI د معرف محمد م	s [lons/nour]	
Total Eucland Lube Costs	\$ 47,400.00 \$ 988,138,49	J	
Insurance Costs			
P&I	\$ 704.000	these values	from VSL Cost Estimate
Supplemental P&I	\$ 00	2012 inflator	
P&I Deductik	ole 128 000		
	00		
\$ Hull Insuran	ce 160.000		
Premium \$ H	ull 00		
Deductible	177,536.		
	00		
\$ VSL Guarant	ee 12,800.		
Premium Ś	00		
T	64,000.		
	00		

Total Insurance Costs \$ 1,246,336.00

Crew Costs

Number of Crew Avg Salary/ Crew	\$ 00	25 80,000.	[persons] [\$/person]				
Overhead	Å	100%					
Costs	Ş	160.000	[\$/person]				
	00	100,000.					
Total Crew Costs	\$	4,000,000.00					
Port Fees	\$	450,000.0	00				
Sewage Pumpout		\$679,013.99					
Maintenance and Repair M&R \$ SS&E \$ Misc Operating Expense \$ Edible Stores \$		704,000. 00 128,000. 00 160,000. 00 177,536. 00	these values from VSL Co 2012 inflated 28% to 20	ost Estimate 123 values			
Chemicals Lubricating	\$ Oil	12,800.00	Lube		oil change	intervals	
	\$	64,000.00	D		en enange		
SSH Drydocking	\$ 00	384,000.	total lube oil	3136 liters		total vol	ume mains
Intermediate DD/UV	VII D	38 400 0	0 waste oil can	782 liters		1500	632 litors
Total Annual M&R	\$	1,668,736.00	Main engines	113 liters		1500 hours	052 11(1)
			Gensets	30.0 liters		500 hours	
Total Annual OpEx	\$	9,032,224.48	changes/bunker	5.0			
At 4 trips/day					Gensets	Cat C9.3	Marine Gensets
1 dav			Fuel Requirements		Number		2
2 davs			Trip Distance	22.6 [nm]	Power		250 kW
3 days			Burn Rate	1.321363233 [mt/hour]	Fuel Burn		35.4 gal/hr
4 days			Bunkering Rate	100 [m3/hour]	at Full	134	.003514 l/hr
5 days			Total Fuel	116.07 mt	Power	0.12	3283233 mt/hr
6 days							
1 week							
weeks							
4 weeks							

\$3,062,691.45 988,138.49

Insurance	Ş	1,246,336.0						
Crew Costs	\$	4,000,000.0	Trips	Fuel Burned + 15%	Volume			
M&R	\$	1,668,736.0 0	1	1.717111521 [mt]	1.4	1.476715908 [m3]		
Sewage		\$679,013.9 9	2	3.434223042 [mt]	2.9	53431816 [m3]		
Port Fees	\$	450,000.00	4	6.868446085 [mt]	5.9	06863633 [m3]		
Total Annual Costs	\$	12,094,915. 93	8	13.73689217 [mt]	11.	81372727 [m3]		
			12	20.60533825 [mt]	17	7.7205909 [m3]		
			16	27.47378434 [mt]	23.	62745453 [m3]		
	in \$1000		20	34.34223042 [mt]	29.	53431816 [m3]		
annual Capex		\$3,063	24	41.21067651 [mt]	35	5.4411818 [m3]		
fuel & lube		\$988	28	48.07912259 [mt]	41.	34804543 [m3]		
Insurance		\$1,246	56	96.15824518 [mt]	82.	69609086 [m3]		
Crew Costs		\$4,000	112	192.3164904 [mt]	165	5.3921817 [m3]		
M&R		\$1,669		m3	mt	Range		Miles/w k
Sewage		\$679			108.255814	81.9273696	1638.5473 92	112 0
Port Fees		\$450						
Total Annual Costs		\$12,095						

VSL Annual Operating Expenses Estimates 2012 and 2023 inflation 2012-2023 28.00%

	minaci	OII LOIL LOLD	20.00/0				
Fuel Expenses		2012		2023			
Fuel \$/ton MGO	\$	6,789,000.00	\$	8,689,920.00			
Aux Fuel \$/ton	\$	420,000.00	\$	537,600.00			
MGO							
Cylinder Oil	\$	150,000.00	\$	192,000.00			
Fuel Testing	\$	6,000.00	\$	7,680.00			
	Fuel To	otals	\$ 9,427,200.00				
Operational							
Expenses							
Labor	\$	4,200,000.00	\$	5,376,000.00			
Labor (OT)	\$	1,600,000.00	\$	2,048,000.00			
Relief Officers	\$	55,000.00	\$	70,400.00			
Misc Crew Expense	\$	10,000.00	\$	12,800.00			
Transportation	\$	40,000.00	\$	51,200.00			
	Labor	Totals	\$	7,558,400.00			
Maintenance							
M&R	\$	550,000.00	\$	704,000.00			
SS&E	\$	100,000.00	\$	128,000.00			
Misc Operating	\$	125,000.00	\$	160,000.00			
Edible Stores	Ś	138.700.00	Ś	177.536.00			
Chemicals	\$	10,000.00	\$	12,800.00			
Lubricating Oil	\$	50,000.00	\$	64,000.00			

Operating Sub Total ex labor \$ 1,246,336.00

Drydocking SSH Drydocking Intermediate DD/UWI	\$ LD \$	300,000.00 \$ 30,000.00 \$	384,000.00 38,400.00			
DD/Overhaul total	422,400.00					
Insurance Costs						
P&I	\$	530,000.00	\$	678,400.00		
Supplemental P&I	\$	180,000.00	\$	230,400.00		
P&I Deductible	\$	590,000.00	\$	755,200.00		
Hull Insurance	\$	500,000.00	\$	640,000.00		
Premium						
Hull Deductible	\$	250,000.00	\$	320,000.00		
VSL Guarantee	\$	50,000.00	\$	64,000.00		
Premium						
	Ins	surance Totals	\$	2,688,000		

Total Annual Operating Expenses

\$ 21,342,336

Γ

		EHP	y = 19.015x ² - 246.76	x + 923.93 y =	
		Fuel	0.0067x ² - 0.0866x +	0.324	
		mt/h			
	PE total (kW)	PP total (kW)	Speed (kt)	PE total (kW)	[mt/hr]
8 trips/day	60.0	120.1	5.000	60.0	0.021063602
	101.0	202.0	6.000	101.0	0.035435319
	156.4	312.9	7.000	156.4	0.054893082
	228.2	456.4	8.000	228.2	0.08007099
	318.1	636.3	9.000	318.1	0.111628359
	428.5	857.0	10.000	428.5	0.150342211
	562.1	1124.2	11.000	562.1	0.197220371
	722.8	1445.6	12.000	722.8	0.253610034
	915.7	1831.3	13.000	915.7	0.321282288
	1146.7	2293.4	14.000	1146.7	0.402343495
1 week	1424.6	2849.2	15.000	1424.6	0.499865143
2 weeks	1762.5	3525.0	16.000	1762.5	0.618425473
	2163.8	4327.7	17.000	2163.8	0.759243853
	2616.6	5233.1	18.000	2616.6	0.918090005
	3120.1	6240.2	19.000	3120.1	1.094772276
	3705.8	7411.6	20.000	3705.0	1.3

Bunker

hours/trip trips/1500 hrs

	Bunker		trips/1500 hrs 1.13					
days days		1659.292035 days 1106.19469 days		1327.433628				
			Speed (kt)	Fv	Rhare (N)			
			5 000	0 203	23338.3			
			6 000	0.244	32718.4			
			7.000	0.284	43443.6			
			8.000	0.325	55448.7			
			9.000	0.366	68712.9			
			10.000	0.406	83288.9			
			11.000	0.447	99326.6			
			12.000	0.487	117082.4			
			13.000	0.528	136914.6			
			14.000	0.569	159211.8			
			15.000	0.609	184615.4			
			16.000	0.650	214128.2			
			17.000	0.690	247422.2			
			18.000	0.731	282565.5			
			19.000	0.772	319210.1			
			20.000	0.812	360173.2			
Total Trips/	bunker							
	67.59840498	1527.723953						
		Bunke	r period fuel	Oil Cl	nange Interval			
	4trips/day		16.89960124		331.8584071			
	6trips/day	/	#DIV/0!		221.2389381			
	2850 Strips/day		8.449800622		105.9292035			
aays		829.6460177 d						

4. Income Projections

Estimated Gross Inc	ome Based on Average Rates,	Trip Le	ength and % Capacit	Y						Current Black Ball	ferry Rates		
										Passenger \$/NM	L-m \$/NM	average pass \$	hour
miles/ trip	hours/trip		max pass	ma	ax cars		Trips/ day		Days/yr	0.973	2.257	\$	17.60
22.6	1.25		65U		100		b		350		the second likes	A sheet Dave (
Actual	Passenger Rate \$/NW		ne weter kate/www			protit	multiplier	1-1		00/	average cars/not	Actual Pass/yr	100000
DED Dates	\$ 0.5	1/ 5	2.26				2	inte	erest rate	8%	\$ 40.80		400000
RFR Rates	\$ 0.0	ç cc	0.62								rate		00/
Actual Pater	% canacity	inc	ome miler / trip	incomo	hours Itrin	Annua	Groce Income	No	tincomo	pawoff [wes]	rate		676
Actual nates	76 Capacity 10/	196 S	39 800 00	¢	19 400 00	¢	62 160 000 00	¢	50.065.084.07	0 713184549	1365000		
200	SAC 81	5% \$	33,830,00	ć	16 490 00	é	52,836,000,00	¢	40 741 084 07	0.882058992	1160250		
7	5% 7	5% ¢	29,850,00	ç	14 550 00	ç	46 620 000 00	ç	34 525 084 07	1.047429807	1023750		
			25,030.00	6	12 610 00	é	40,020,000.00	ć	39,323,004.07	1 2001 20562	007750		
6	978 0: 1946 66	576 Ş	23,870.00	2	11 640 00	ç	37 296 000 00	ç	26,309,084.07	1.2091/9303	819000		
50	5% 50	5% \$	21,890,00	0	10,670,00	e e	34 198 000 00	ç	22,201,084.07	1 676207858	750750		
5	NAC 50	0% ¢	19 900 00	0	9 700 00	é	34,188,000.00	¢	19 095 094 07	1.070207838	692500		
45	5% 50	5% ¢	17,910,00	c c	9,700.00	e e	27 972 000 00	ç	15 977 094 07	2 206252707	614250		
		00/ C	15,020,00	6	7 760 00	0	27,372,000.00	0	13,377,004.07	2.550252707	546000		
40	176 40	070 P	13,920.00	2	5,920,00	2	24,004,000.00	ç	12,769,084.07	5.0550/1520	400500	actual utilization	
30	54 34	5% ¢	9,950,00	ç	4 950 00	ç	15,540,000,00	ç	2 445 084 07	10 449301	241250	actual utilization	
2.		5/0 \$ 00/ ¢	3,550.00	\$	3,890,00	\$	13,340,000.00	ç	3,443,004.07	451115 AL	341230		
20		070 Ş	7,960.00	\$	3,000.00	ç	12,432,000.00	ç	(2 220 015 02)	#INUIVI:	273000		
1	576 I:	570 Ş	3,970.00	2	2,910.00	2	9,324,000.00	\$	(2,770,915.93)	-0.770904074	204750		
10	5% 10	0% \$	3,980.00	2	1,940.00	5	6,216,000.00	ç	(5,878,915.93)	-4.8/1128556	136500		
	376	570 Ş	1,990.00	ş	970.00	Ş	5,108,000.00	Ş	(8,960,915.95)	-3.364336949	08230	,	
RER Rates * Profit	% canacity	inc	ome miles / trip	income	hours /trin	Annua	Gross Income	Not	tincome	navoff [vrs]	nasslur		
full ferry	100	1% S	38 396 56	S	38 800 00	S	81 056 386 43	S	68 961 470 50	0 513836677	1365000		
	594 99	59/ C	32 637 07	ć	22 080 00	c	69 997 979 46	ć	56 902 012 52	0.626512142	1160250		
75	5/6 5/	5% 6	28 707 42	0	29 100 00	c	60 797 289 82	ç	49 607 272 90	0.723701226	1022750		
6	5% 60	5% \$	24,957,76	c c	25,220,00	\$	52 686 651 18	s	40,097,375.89	0.885417467	887250		
60	0% 6	096 5	23 037 94	Ś	23,280.00	Ś	48 633 831 86	s	36 538 915 93	0.987449069	819000		
50	5% 50	5% \$	21,118,11	ŝ	21,340,00	ŝ	44 581 012 53	Ś	32 486 096 61	1.116075096	750750		
5	N96 5/	096 \$	19 198 78	c l	19 400 00	s	40 528 193 21	c	28 433 277 29	1 283261111	682500		
44	5%	5% \$	17 278 45	6	17 460 00	6	36 475 373 89	s	24 380 457 96	1 50942683	614250		
40	196 40	0% \$	15 358 62	ŝ	15 520.00	Ś	32 422 554 57	Ś	20 327 638 64	1 832529363	546000		
30	196 30	0% \$	11 518 97	Ś	11 640 00	Ś	24 316 915 93	s	12 222 000 00	3 208044745	409500	actual utilization	0
24	5% 21	5% \$	9 599 14	ŝ	9 700 00	Ś	20 264 096 61	Ś	8 169 180 68	5 151662172	341250		
20	ng(2)	0% ¢	7 679 21	ć	7 760.00	é	16 211 277 20	ć	4 116 261 26	12 625 22557	273000		
10	10	0% \$	3 839 66	\$	3 880 00	s	8 105 638 64	ç	(3 989 277 29)	-6 665515083	136500		
	5%	5% 5	1 919 83	š	1 940 00	Ś	4 052 819 32	Ś	(8 042 096 61)	-3 729769677	68250		
		J/0 J	1,513.65	2	1,340.00	2	4,032,013.32	2	(0,042,030.01)	-3.725703077	002.50		
They represent aver	ages of the ferries examined a	nd are	NOT the required r	ates for a	our ferry de	sign.							
they represent aver	abes of the ferries examined a	e	the required i		un nenty de			(25	th flow diagram				
Trin Distance	2	2.6 NM	4					ras	and a start and a start and				
Ave Passenger Cost	\$22	00						VP	ar	income-expediture	total profit		
Lane Meter Cost	CC1	00						100	1	-\$42 455 860	-\$42 455 860		
Fore merel cost	201.								1		-,,,-,,000		

						2	\$6,553,084	-\$35,902,776
Required Pass Rate	\$18.75					3	\$6,553,084	-\$29,349,692
Required LM Rate	\$14.02					4	\$6,553,084	-\$22,796,608
	85.00%	50%		30%		5	\$6,553,084	-\$16,243,523
Gross Income/yr \$	52,836,000.00	\$ 31,080,000.00	\$	18,985,084.07		6	\$6,553,084	-\$9,690,439
Opex/ yr	\$12,094,915.93	\$ 12,094,915.93	\$	12,094,915.93		7	\$6,553,084	-\$3,137,355
Profit/yr	\$40,741,084.07	\$ 18,985,084.07	\$	6,890,168.14		8	\$6,553,084	\$3,415,729
						9	\$6,553,084	\$9,968,813
Payoff Capex	0.88	1.78		0.00		10	\$6,553,084	\$16,521,897
						11	\$6,553,084	\$23,074,981
						12	\$6,553,084	\$29,628,065
						13	\$6,553,084	\$36,181,149
						14	\$6,553,084	\$42,734,233
% capacity payoff [years]	Utilizat	tior	n vs Payoff - Current Rates		15	\$6,553,084	\$49,287,317
100.00%	0.71	25.00				16	\$6,553,084	\$55,840,401
85.00%	0.88					17	\$6,553,084	\$62,393,485
75.00%	1.05	20.00		۲		18	\$6,553,084	\$68,946,569
65.00%	1.29	2 15.00				19	\$6,553,084	\$75,499,654
60.00%	1.46	10.00				20	\$6,553,084	\$82,052,738
55.00%	1.68	10.00				21	\$6,553,084	\$88,605,822
50.00%	1.97	5.00	+			22	\$6,553,084	\$95,158,906
45.00%	2.40	0.00				23	\$6,553,084	\$101,711,990
40.00%	3.05	0.00% 20	.005	% 40.00% 60.00% 80.00%	100.00% 120.009	24	\$6,553,084	\$108,265,074
30.00%	6.81			Capacity Utilization		25	\$6,553,084	\$114,818,158
25.00%	19.45							
20.00% #M	IMUM!			payoff [years]				
15.00%	-8.78							
10.00%	-4.87							

Appendix D: Structural Calculations

1. Design Pressures

Design Pressures

IAW SWATH Requirements, Wave Impact Slamming Pressures 3-2 Section 2.3

Design Pressures						
from to						
Design Area Medium	Adm	0.0324	29.2896	[m ²]		
Design Area Large	Adl	29.2896	129.6	[m ²]		
Reference Area	Ar	129.6		[m ²]		
Breadth	В	27		[m]		

Slamming Pressures					
n 6.9					
Long Impact Load Factor	Lp	see table	[m]	
Fore & Aft Length of Box	Lb		80 (m]	
Frame Spacing	s	1.	25 (m]	

La	ngitudinal Impac	t Load Distribution	Factors			
	from SW	ATH 3-2 Figure 1				
Bow Bow-20% 20%-30% 30%-stern						
Wet Deck	1	1	0.73	0.73		
Inboard Haunch	0.7	0.7	0.59	0.59		
Outboard Haunch	0.59	0.59	0.59	0.59		
Inboard Strut	0.47	0.47	0.4	0.4		
Outboard Strut	0.4	0.4	0.4	0.4		

Maximum Slamming Pressure (P _{max}) [KN/m ²]						
Bow Bow-20% 20%-30% 309						
Wet Deck	783.77	783.77	572.15	572.15		
Inboard Haunch	548.64	548.64	462.42	462.42		
Outboard Haunch	462.42	462.42	462.42	462.42		
Inboard Strut	368.37	368.37	313.51	313.51		
Outboard Strut	313.51	313.51	313.51	313.51		

Panel Size [m ²]						
Width Bow-20% 20%-30% 30%-stern						
Wet Deck	6.23	7.79	7.79	7.79		
Inboard Haunch	1.75	2.19	2.19	2.19		
Outboard Haunch	1.19	1.49	1.49	1.49		

Kdl (applies to all panels)						
	Kd	Kn	20%-30%	30%-stern	Ad/Ar	
Wet Deck	0.31	0.42			0.048055556	
Inboard Haunch	0.36	0.42			0.013510802	
Outboard Haunch	0.39	0.42			0.009166667	

Design Pressures (P _{des}) [KN/m ²]					
Bow Bow-20% 20%-30% 30%-stern					
Wet Deck	566.61	566.61	413.62	413.62	
Inboard Haunch	471.48	471.48	397.39	397.39	
Outboard Haunch	426.76	426.76	426.76	426.76	

2. Plating Thicknesses

Deck Plating IAW SWATH Requirements 3-2 Section 3 Operational Loads

Material Factor					
Al alloy	m				
5083	1.23				
5086	1.46				
5454	1.62	used in design			
5456	1.23				
6061-T-6	1.75				

Nominal Deck Loads from 3-2 Section 3.1				
Crew Spaces	4510	N/m		
Work Areas	9020	N/m		
Storage Areas	13000	N/m		

Platform Decks				
material factor	m	1	mild steel	
deck beam spacing	Sb	750	mm	
	k	1	ar > 2	
between deck height	h roro	3		
	h main	3		
	h bridge	3		
	h mid mach	3		
	h tank top	1.5		
	c	254		
	a	1.5	mm	

		Roro deck		
Rules for Building a	and Classing Marine	Vessels Part 5C Specif	ic Vessel Types;	5C-10-2 Section 11.3.2
	k	8.05		
	n	1		
	C	1.1		
static wheel load	W	16.35	KN	30,000 kg truck 18 wheels
	W	4.56	KN	1860 kg car 4 wheels
wheel imprint long	а	50		
wheel imprint trans	b	300		
length of plate panel	I	2250	mm	
longitudinal spacing	s	750	mm	
	l/s	3		
	к	0.185187378		
Roro Deck Plate thick	t roro	6.32	mm	comp Roro decks 12 mm
1	1	1	1	

]				
IAW SV	VATH Requirem	ents 3-5 Section 2.2	Deck Plating page	52]
		Steel	Aluminum]
Roro by load	t roro	6.32		mm	roro deck loading procedures
Roro by SWATH rules	t roro	6.61		mm	weather deck thickness- SWATH rules
main deck	t main	5.85	9.48	mm	encl. platform decks: accom spaces- SWATH rules
bridge deck open	t bridge	6.61	10.72	mm	weather deck thickness- SWATH rules
bridge deck enclosed	t bridge	6.61	10.72	mm	encl. platform deck -SWATH rules
mid machinery deck	t mid mach	6.61		mm	encl. platform deck- SWATH rules
Tank Top strength deck	t tank top	5.12		mm	encl. platform deck- SWATH rules
hgs		4.29		m	
weather deck		7.62		mm]

Long]			
	E	2.06E-05	N/mm ²	
Net Plate Thickness	t _b	7.92		after deductions in 3-2-A4/3.3.3 Table 1A or 1B
panel short side	s	750	mm	
panel long side	I	2250	mm	
	c	1.3		plating stiffened with floors or deep girders
stress ratio				
Stillwater bending mom	Msw		kN-m	
wave bending moment	Mw	2.46E+11	kN-m	1
Moment of inertia Hull girder	In .	33922	cm ⁴	
neutral axis to considered pt	Y	0.185	m	1
	Q	1		ordinary steel
	Cs	1.00E+05		

3. Shell Framing

Shell Framing

IAW SWATH Requirements 3-5 Section 2.5.2 page 57

Trans	verse Frames			
IAW SWATH Requirem	ents 3-5 Section	1 2.5.2 page	57	
	С	877		
vertical distance-middle of I to deck at side				
		2.1		
transverse frame spacing	s	1.25	m	
span between heels	I	8	m	dbl bottom
			m	mid machine
			m	roro
design stress clear of tanks	sigma b	250	N/mm ²	
yield stress for steel	sigma y	500	N/mm ²	
Required Sectional Modulus for Frames	SM	589.34	cm ³	

at forward perp. Middle of I to bulklhead deck aft of amidships-middle of I to 2/3 distance to bulkhd deck otw fwd perp and amidhsips h interpolated between above not less than 2.1 m

Design Section Modulus								
length of shell plate	225	mm						
shell plate thickness	0.8	mm						
Top Flange width	10	cm						
Top Flange Thickness	0.8	mm						
Web Height	35	cm						
Web Thickness	0.8	mm						
Total Depth	36.6	cm						
Area	216							
Су	32.5537							
Ix	19629.39							
Design Section Modulus	602.98	cm ³						

4. Web Frames & Stringers

Web Frames and Side Stringers Web Frames & Side Stringers

	C	877		
middle of I to deck at side	h bl-tt	6.5	m	
	h tt-mm	4.5	m	
	h mm-rr	1.5	m	
	h rr-mn	2	m	
	h mn-br	3.5	m	
frame spacing	s	2.25	m	
	l bl-tt	0.5	m	
	Itt-mm	1.5	m	
	I mm-rr	1.5	m	
	I rr-mn	2	m	
	I mn-br	1.5	m	
design stress clear tanks	sigma b	200	N/mm ²	
steel yield stress	sigma y	400	N/mm ²	
design stress	sigma d	181.5	N/mm ²	aluminum
Material Yield Stress	sigma y	330	N/mm ²	aluminum

	c	877	
supported breadth	b	0.75	m
length	1	1.2	m
mid I to deck at side	h bl-tt	6.5	m
	h tt-mm	4.5	m
	h mm-rr	1.5	m
	h rr-mn	2	m
	h mn-br	3.5	m
design stress clr tks	sigma b	200	N/mm ²

	Transverse Frames Re	equired SM		
Baseline to tank top	16.03	cm ³	0.98	in ³
tank top to mid mach	99.90	cm ³	6.10	in ³
mid mach to roro	33.30	cm ³	2.03	in ³
roro to main	78.93	cm ³	4.82	in ³
main to bridge	77.70	cm³	4.74	in³
Transverse Fran	ne Spacing At 1.2 m	- Stiffener Spac	ing 35 cm	
supported breadth	b	0.35	m	

Stringer Required Section Modulus SM - Steel							
Baseline to tank top	14.37	cm ³	0.88	in ³			
ank top to mid mach	9.95	cm ³	0.61	in ³			
nid mach to roro	3.32	cm ³	0.20	in ³			
oro to main	4.42	cm ³	0.27	in ³			
nain to bridge	7.74	cm ³	0.47	in ³			

Required Bulb Plate 30%-stern						
length of shell plate	750					
shell plate thickness	0.6					
Top Flange width	5					
Top Flange Thickness	0.6					
Web Height	5					
Web Thickness	0.6					
Total Depth	6.2					
Area	456					
Cy	5.84					
Ix	136.02					
Section Modulus	23.27					

Required Bulb Plate Size							
	Section Modulus [c	Mass [kg/m]	Delta SM				
100 × 7	14.5	7.13	0.13				
100 x 6	12.7	7.33	2.75				
60 x 5	6.91	4.42	3.59				
60 x 5	6.91	4.42	2.49				
80 x 6	8.15	5.07	0.41				

	Transverse Frame Spacing At 1.2 m- Stiffener Spacing 75 cm - Final Design Spacing										
						Required Bulb Plate Size	Section Modulus	Mass	Delta SM	1	
	Side Strin	ger Required	d Section M	odulus SM			cm3	kg/m]	
Baseline to tank top	30.78	cm ³	1.88	in ³	33.92	140 x 8	32.50	25.5	1.72	steel	
tank top to mid mach	21.31	cm ³	1.30	in ³	23.48	120 x 8	23.60	9.57	2.29	steel	
mid mach to roro	7.10	cm ³	0.43	in ³	7.83	80 x 6	8.15	5.07	1.05	steel	
roro to main	9.47	cm ³	0.58	in ³	10.44	100 x 6	12.70	7.33	2.26		
main to bridge	16.58	cm ³	1.01	in ³	18.26	120 x 6	18.50	7.6	0.24		

Alternate Transverse Frame Spacing At 5 m- Stiffener Spacing 75 cm											
length	1.25	m				Required Bulb Plate Size	Section Modulus	Mass	Delta SM		
Web Frames and Side Stringer Required Section Modulus SM						cm3	kg/m				
Baseline to tank top	33.40	cm ³	2.04	in ³		220 x 10	113	25.5	79.60		
tank top to mid mach	23.12	cm ³	1.41	in ³		180 x 11.5	76.8	19.8	53.68		
mid mach to roro	7.71	cm ³	0.47	in ³		140 x 6.5	27.3	9.58	19.59		
roro to main	10.28	cm ³	0.63	in ³		140 x 10	39.8	13.5	29.52		
main to bridge	17.99	cm ³	1.10	in ³		180 x 9	61.8	16.9	43.81		

5. Deck Beams & Girders

Deck Beams, Transverses, Girder IAW SWATH Requirements 3-5 Section 2.3 page 54

The minimum requirements for stiffening and framing members on the Strength Deck, and on any internal Platform Decks, related to local load

Conditions						This design calls for transverse frames every 2.25 meters				
	С	584.7			and a girde	and a girder to split each long span with support from a				
height tank top	h tank top	3	m		bulkhead o	r stanchion even	other frame.			
height mid machine	h mid mach	3	m							
height roro	h roro	4	m							
height main	h main	3	m							
height bridge	h bridge	3	m							
spacing of beams	s	0.75	m							
beam span tank top	ltt	7.043	m							
beam span mid mach	Imm	7.043	m							
beam span roro	Iroro	7.043	m							
beam span passenger	I main	5.81	m							
beam span bridge	I bridge	5.81	m			Bulb Pla	tes Required			
design stress	sigma d	220	N/mm ²	steel		SM	kg/m	delta SM		
Material Yield Stress	sigma y	400	N/mm ²	steel	80 x 7	9.24	5.73	-287.385		
design stress	sigma d	181.5	N/mm ²	aluminum	100 x 7	14.5	7.13	-282.125		
Material Yield Stress	sigma y	330	N/mm ²	aluminum	120 x 7	21	8.58	-374.501		

Beam Required Section Moduli										
		Required		Required		Design	delta SM			
tank top	SM tt	296.6254	cm ³	18.101	in ³	306.337	9.712	cm ³		
mid machine	SM mm	296.6254	cm ³	18.101	in ³	306.337	9.712	cm ³		
roro	SM roro	395.5005	cm ³	24.135	in ³	430.057	34.556	cm ³		
passenger	SM main	244.6759	cm ³	14.931	in ³	269.665	24.989	cm ³		
bridge	SM bridge	244.6759	cm ³	14.931	in ³	269.665	24.989	cm ³		

		n	Beam Designs
Tan	k Top) C
S	teel		1 E
length of deck plate	75	cm	le
deck plate thickness	0.06	cm	d
Top Flange width	20	cm	T
Top Flange Thickness	0.06	cm	T
Web Height	28	cm	V
Web Thickness	0.08	cm	v
Total Depth	28.12	cm	T
Area	7.94	cm ³	A
Cy	19.891		C
lx	6093.390		b
Section Modulus	306.337	cm ³	s

Roro								
Steel								
length of deck plate	75	cm						
deck plate thickness	0.06	cm						
Top Flange width	22	cm						
Top Flange Thickness	0.06	cm						
Web Height	30	cm						
Web Thickness	0.08	cm						
Total Depth	30.12	cm						
Area	8.22	cm ³						
Cy	20.875							
lx	8977.226							
Section Modulus	430.057	cm ³						

Mid Machine							
	Steel						
length of deck plate	75	cm					
deck plate thickness	0.06	cm					
Top Flange width	20	cm					
Top Flange Thickness	0.06	cm					
Web Height	28	cm					
Web Thickness	0.08	cm					
Total Depth	28.12	cm					
Area	7.94	cm ³					
Cy	19.891						
Ix	6093.390						
Section Modulus	306.337	cm ³					

Passenger/Bridge								
Aluminum								
length of deck plate	75	cm						
deck plate thickness	0.06	cm						
Top Flange width	22	cm						
Top Flange Thickness	0.06	cm						
Web Height	26	cm						
Web Thickness	0.08	cm						
Total Depth	26.12	cm						
Area	7.9	cm ³						
Су	18.305							
Ix	4936.221							
Section Modulus	269.665	cm ³						

Deck G		Deck Girder Designs					
					TT deck	MM deck	RoRo
	C	584.7		length of deck plate	120	120	120
height tank top	h tank top	3	m	shell plate thickness	0.8	0.8	0.8
height mid machine	h mid mach	3	m	Top Flange width	10	25	25
height roro	h roro	4	m	Top Flange Thickness	0.8	0.6	0.8
height main	h main	3	m	Web Height	40	30	35
height bridge	h bridge	3	m	Web Thickness	0.8	1	0.8
supported deck breadth	m tt	4.2	m	Total Depth	41.6	31.4	36.6
	m mm	4.2	m	Area	136	141	144
	m roro	4.8	m	Cy	34	24.457	27.747
	m main	9	m	lx .	28132.49	19820.761	33411.670
	m bridge	9	m	Section Modulus	827.43	810.418	1204.145
Length btwn supports	1	4.8	m				
design stress	sigma d	220	N/mm ²				

Deck Girder SM						delta SM
tank top	SM tt	771.55	cm ³	47.083	in ³	55.877
mid mach	SM mm	771.55	cm ³	47.083	in ³	38.869
roro	SM roro	1175.69	cm ³	71.745	in ³	28.451
main	SM main	1653.32	cm ³	100.891	in ³	
bridge	SM bridge	1653.32	cm ³	100.891	in ³	

Girder	Proportions	Required

Steel							
Depth Clear of Tanks	279.8	mm					
Depth in way of tanks	398.4	mm					
web thickness no tanks	4.00	mm					
web thick with tanks	4.00	mm					

Aluminum							
Depth Clear of Tanks	322.6	mm					
Depth in way of tanks	459.8	mm					
web thickness no tanks	6.51	mm					
web thick with tanks	6.51	mm					

6. Shell Plating

Shell Plating IAW SWATH Requirements 3-5 Section 2.6 page 59

The plating, beams and supporting structures (i.e., girders, floors, side stringers etc.) of the wet deck, haunch and strut external surfaces are to comply with the following requirements for wave impact.

Conditions					Design Pressures (P _{des}) [kN/m ²]					
	u	1	for steel				Bow	Bow-20%	20%-30%	30%-stern
	Uw	235	N/mm ²			Wet Deck	566.61	566.61	413.62	413.62
Deck Beam Spacing	s	2.5	m			Inboard Haunch	471.48	471.48	397.39	397.39
	k	1				Outboard Haunch	426.76	426.76	426.76	426.76
Equivalent Head in SW	h					Inboard Strut	N/A	N/A	N/A	N/A
	Bow	Bow-20%	20%-30%	30%-stern		Outboard Strut	N/A	N/A	N/A	N/A
Wet Deck	56.38	56.38	41.16	41.16						
Inboard Haunch	46.91	46.91	39.54	39.54]				
Outboard Haunch	42.46	42.46	42.46	42.46						
Inboard Strut	N/A	N/A	N/A	N/A						
Outboard Strut	N/A	N/A	N/A	N/A						
	n	10.05	KN/m ²							
ordinary strength steel	J	3.04]				

Required Shell Plate Thickness [mm]										
	Bow		Bow-	20%	20%-	30%	30%-ste	rn		
Wet Deck		6.17		6.17		5.28		5.28		
Inboard Haunch		5.63		5.63		5.17		5.17		
Outboard Haunch		5.36		5.36		5.36		5.36		
Inboard Strut	N/A		N/A		N/A		N/A			
Outboard Strut	N/A		N/A		N/A		N/A			
Bottom Plating +1.5mm										
(Drydock)		7.67		7.67		6.78		6.78		

Design Shell Plate Thickness [mm]								
	Bow	Bow-20%	20%-30%	30%-stern				
Wet Deck	7.00	7.00	6.00	6.00				
Inboard Haunch	6.00	6.00	6.00	6.00				
Outboard Haunch	6.00	6.00	6.00	6.00				
Inboard Strut	N/A	N/A	N/A	N/A				
Outboard Strut	N/A	N/A	N/A	N/A				
Bottom Plating								
+1.5mm (Drydock)	8.00	8.00	7.00	7.00				

Watertight Tank and Bulkheads

Watertight and Tank Bulkheads IAW SWATH Requirements 3-5 Section 3.2 page 63

	Conditions			
	m	1		Steel
stiffener spacing	s	750	mm	
	k	1		AR const
	q	0.5875		Steel
Steel Yield Strength	Y	400	N/mm ²	
collision and tank blkhds	C	254		
other watertight blkhds	C	290		
Collision & watertight blkhds	а	1.5	mm	
Tank bulkheads	а	2.5	mm	
effective pressure head				
double bottom C&W	h	6	m	
3rd Deck C&W	h	4	m	
2nd Deck C&W	h	3	m	
double bottom tank	h	6.5	m	
3rd Deck Tank	h	4.67	m	

Tank Bulkhead Plate Thickness Requirements			
double bottom C&W	t	5.51	mm
3rd Deck C&W	t	4.50	mm
2nd Deck C&W	t	3.90	mm
double bottom tank	t	5.71	mm
3rd Deck Tank	t	4.84	mm

Watertight Bulkheads			
dbl btm	h	6.5	m
3rd deck	h	4.82	m
2nd deck	h	2.42	m

Stiffeners and Beams					
	С	877			
stiffeners spacing	s	0.75	m		
span	L	2.25	m		
design stress	sigma b	180	N/mm ²		
yield stress	sigma y	400	N/mm ²		

Tank Bulkheads					
dbl btm	h	4.167	m		
3rd deck	h	2.167	m		

Required Stiffener and Beam SM

Collison & Watertight					
dbl btm	SM	120.24	cm ³	7.34	in ³
3rd Deck	SM	89.17	cm ⁴	5.44	in ⁴
2nd Deck	SM	44.77	cm ⁴	2.73	in ⁴

Tank Bulkheads						
dbl btm	SM	77.08	cm ³	4.70	in ³	
3rd Deck	SM	40.08	cm ⁴	2.45	in ³	

Required Bulb Plate						
	SM [cm ³]	Mass [kg/m]	Depth	Webt	Delta SM	
220 x 12	122	27.2	220	12	1.76	
200 x 11	92.3	22.6	200	11	3.13	
160 x 9	47.9	13.97	160	9	3.13	
200 x 9	77.7	18.57			0.62	
160 x 8	43.9	12.72			3.82	

Girders and Webs Conditions				
	C	877		
sum of half lengths of stfnrs				
double bottom	b	6	m	
3rd Deck	b	10	m	
2nd Deck	b	12	m	
length between supports	L	4	m	
design bending stress	sigma a	180	N/mm ²	

	Effective Pressure Head							
Watertight Bulkheads						Tank Bulkheads		
dbl btm	h	6.5	m		dbl btm	h	4.167	m
3rd Deck	h	4.82	m		3rd Deck	h	2.167	m
2nd Deck	h	2.42	m	1				

Required Section Modulus for Girders and Webs

Collison & Watertight						
dbl btm	SM	3040	cm ³	185.53	in ³	
3rd Deck	SM	3757	cm ³	229.29	in ³	
2nd Deck	SM	2264	cm ³	138.15	in ³	

Tank Bulkheads										
dbl btm	SM	1949	cm ³	118.93	in ³					
3rd Deck	SM	1689	cm ³	103.07	in ³					

2 m

Minimum Proportions of Stiffening and Framing Members IAW SWATH Requirements 3-5 Section 3.3 page 66

length of unsupported span

Watertight Bulkheads											
Steel											
Minimum Depth	166.66	mm									
Minimum Web Thickness	5.00	mm									
Alumin	um										
Minimum Depth	192	mm									
Minimum Web Thickness	7.38	mm									

Tank Bulkheads											
Steel											
Minimum Depth	290	mm									
Minimum Web Thickness	8.7	mm									
Al	uminum										
Minimum Depth	334	mm									
Minimum Web Thickness	9.51	mm									

7. Ground Tackle

Anchoring and Mooring Equipment

IAW SWATH Requirements 2-2 Section 7 IAW Rules for Building and Classing High Speed Craft 3-5-1 Table 1A

	Conditions										
	k	1									
	m	2									
	n	0.1									
Avg B of Strut/haunch	S	10	m								
d from load line to deck	а	4	m								
Breadth	B'	27	m								
height roro deck	h1	4	m								
height passenger deck	h2	3	m								
height bridge deck	h3	3	m								
Profile Area	A	1530	m²								
Equipment Number	EN	1109.22									

Anchor											
Numeral	Number	Weight									
U25	2	3540	kg								

Chain											
Length	522.5	m	Link Dia	60	mm						
Shot Length	27.5	m	Weight/shot	2220	kg						
Num shots	19	ordinary strength steel									
Weight of Chains	42180	kg	Per chain	21090	kg						
Total Weight	49260	kg									
Volume	103.455	m ³									

Germanischer Lloyd formula from SOTRA anchor and Chain

https://www.sotra.net/?produkter=recomended-volume-of-chain-locker

Totals											
Total Weight	24630	kg									
Max Windlass Load	73890	kg	73.89	mt							

Appendix E: Areas and Volumes Summary

Tank / Space	Area [m ²]	Volume [m ³]
Vehicle (Main)	1647.118	4941.353
Vehicle (Upper)	816.075	2448.225
Passenger (Forward Upper)	281.389	844.166
Passenger (Middle Upper)	202.187	606.560
Passenger (Aft Upper Starboard)	119.892	359.676
Passenger (Aft Upper Port)	119.892	359.676
Passenger (Dining)	93.747	281.240
Passenger (Bridge)	133.920	401.758
Passenger (Bridge Bench Port)	224.573	673.720
Passenger (Bridge Bench Starboard)	224.573	673.720
Machinery (Forward Main Port)	50.507	151.521
Machinery (Forward Main Starboard)	50.507	151.521
Machinery (Aft Main Port)	62.494	187.482
Machinery (Aft Main Starboard)	62.494	187.482
Steering Gear Room (Port)	109.308	327.924
Steering Gear Room (Starboard)	109.308	327.924
Mid Machinery 4 (Port)	108.203	324.609
Mid Machinery 4 (Starboard)	108.203	324.609
Mid Machinery 3 (Port)	106.619	319.856
Mid Machinery 3 (Starboard)	106.619	319.856
Mid Machinery 2 (Port)	138.826	416.478
Mid Machinery 2 (Starboard)	138.826	416.478
Mid Machinery 1 (Port)	91.816	275.448
Mid Machinery 1 (Starboard)	91.816	275.448
Auxiliary Machinery (Port)	54.272	184.739
Auxiliary Machinery (Starboard)	54.272	184.739
Aft Peak Tank (Port)	109.308	225.686
Aft Peak Tank (Starboard)	109.308	225.686
Engine Room 2 (Port)	72.568	217.704
Engine Room 2 (Starboard)	72.568	217.704
Engine Room 1 (Aft Port)	41.075	123.225

Engine Room 1 (Aft Starboard)	41.075	123.225
Engine Room 1 (Forward Port)	40.865	122.596
Engine Room 1 (Forward Starboard)	40.865	122.596
Tank Top 2 (Port)	104.437	313.311
Tank Top 2 (Starboard)	104.437	313.311
Tank Top 1 (Port)	67.379	202.136
Tank Top 1 (Starboard)	67.379	202.136
Bow Thruster Room (Port)	48.202	168.707
Bow Thruster Room (Starboard)	48.202	168.707
Forepeak (Port)	12.230	36.690
Forepeak (Starboard)	12.230	36.690
Saltwater Ballast Tank 1 (Port)	67.379	78.483
Saltwater Ballast Tank 1 (Starboard)	67.379	78.483
Saltwater Ballast Tank 2 (Port)	104.437	140.222
Saltwater Ballast Tank 2 (Starboard)	104.437	140.222
Saltwater Ballast Tank 3 (Port)	81.941	109.532
Saltwater Ballast Tank 3 (Starboard)	81.941	109.532
Saltwater Ballast Tank 4 (Port)	72.569	95.761
Saltwater Ballast Tank 4 (Starboard)	72.569	95.761
Fresh Water Tank (Port)	8.000	8.00
Fresh Water Tank (Starboard)	8.000	8.00
Black Water Tank (Port)	20.1	40.2
Black Water Tank (Starboard)	20.1	40.2
Marine Gas Oil Tank (Port)	25.125	50.25
Marine Gas Oil Tank (Starboard)	25.125	50.25
Marine Gas Oil Settling Tank (Port)	2.711	5.421
Marine Gas Oil Settling Tank (Starboard)	2.711	5.421
Marine Gas Oil Service Tank (Port)	2.711	5.421
Marine Gas Oil Service Tank (Starboard)	2.711	5.421
Lube Oil Tank (Port)	0.825	1.65
Lube Oil Tank (Starboard)	0.825	1.65
Waste Oil Tank (Port)	0.4125	0.4125
Waste Oil Tank (Starboard)	0.4125	0.4125
Clean Bilge Tank (Forward Port)	1.151	1.15125
Clean Bilge Tank (Forward Starboard)	1.151	1.15125
Clean Bilge Tank (Aft Port)	1.151	1.15125

Clean Bilge Tank (Aft Starboard)	1.151	1.15125
Oily Bilge Tank (Forward Port)	5.660	5.660
Oily Bilge Tank (Forward Starboard)	5.660	5.660
Oily Bilge Tank (Aft Port)	5.660	5.660
Oily Bilge Tank (Aft Starboard)	5.660	5.660

Appendix F: Intact Stability Load Conditions and Results

ALLIS DES,
and Colo
No. Archite

STABILITY CALCULATION – AMARYLIS DESIGN 90M ROPAX FERRY Stability 24.00.00.722, build: 722

Model file: C:\Users\Howie Waffler\sunymaritime.edu\Super Seniors Ship Design 1 - General\Ship Design 3\ENGR 461_SUPER SENIORS_HULL MODEL-FERRY_CATAMARAN 90m_REV06.2 (High precision, 115 sections, Trimming on, Skin thickness not applied). Long. datum: FP; Vert. datum: Baseline. Analysis tolerance - ideal(worst case): Disp.%: 0.01000(0.100); Trim%(LCG-TCG): 0.01000(0.100); Heel%(LCG-TCG): 0.01000(0.100)

Loadcase - 0% Cargo, 10% Consumables Damage Case - Intact

Free to Trim Specific gravity = 1.025; (Density = 1.025 tonne/m^3) Fluid analysis method: Use corrected VCG

_

Т

00	0		0 1	0 1	0 1	0 1	0 1	0	0	0	0 /	0 /	0	0	0	0	0	0	0	0	0 1	0	0	0	0 1		ballastilig	Sallaating
=WT.P		Subtotal MGO	MGO SERV.S	MGO SERV.P	MGO SETT.S	MGO SETT.P	MGO 1.S	MGO 1.P		Subtotal Ballast	APT.S	APT.P	SWBT4.S	SWBT4.P	SWBT3.S	SWBT3.P	SWBT2.S	SWBT2.P	SWBT1.S	SWBT1.P	-PT.S	=PT.P		Subtotal Lightship	_ightship			Itam Nama
Fresh			Diesel	Diesel	Diesel	Diesel	Diesel	Diesel			Sea Water					type	E1.11											
10%		10%	98%	98%	67.87%	67.87%	0%	0%		26.62%	0%	0%	0%	0%	50%	50%	100%	100%	0%	0%	0%	0%			1		Quality	Oursetitu
7.599		91.336	2.163	2.163	3.605	3.605	39.900	39.900		1161.225	198.339	198.339	46.929	46.929	86.986	86.986	111.052	111.052	81.859	81.859	55.448	55.448			1582.976	tonne	Mass	
0.760		9.133	2.120	2.120	2.447	2.447	0.000	0.000		309.089	0.000	0.000	0.000	0.000	43.493	43.493	111.052	111.052	0.000	0.000	0.000	0.000		1582.976	1582.976	tonne	Mass	Tatal
7.599		108.733	2.575	2.575	4.292	4.292	47.500	47.500		1132.902	193.501	193.501	45.784	45.784	84.864	84.864	108.343	108.343	79.863	79.863	54.095	54.095				m^3	Volume	l Init
0.760		10.872	2.523	2.523	2.913	2.913	0.000	0.000		301.550	0.000	0.000	0.000	0.000	42.432	42.432	108.343	108.343	0.000	0.000	0.000	0.000				m^3	Volume	Total
-35.625		-51.902	-53.375	-53.375	-50.625	-50.625	-29.375	-29.375		-44.758	-76.499	-76.499	-62.511	-62.511	-55.010	-55.010	-40.742	-40.742	-25.769	-25.769	-4.853	-4.853		-42.695	-42.695	m	Arm	1 ~ 50 M
-9.143		0.000	8.372	-8.372	8.372	-8.372	9.152	-9.152		0.000	6.102	-6.102	6.103	-6.103	9.064	-9.064	9.162	-9.162	9.153	-9.153	6.103	-6.103		-0.024	-0.024	в	Arm	T-220
1.550		2.319	2.480	2.480	2.179	2.179	1.500	1.500		0.746	1.353	1.353	0.096	0.096	0.514	0.514	0.837	0.837	0.000	0.000	0.025	0.025		7.331	7.331	ш	Arm	1/~ 104
3.033		1.033	0.000	0.000	0.516	0.516	0.000	0.000		502.603	0.000	0.000	0.000	0.000	251.302	251.302	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	tonne.m	FSM	Tatal
Maximum			Maximum	Maximum	Maximum	Maximum	Maximum	Maximum			Maximum					r own ype	EOM Tumo											

Г

 т

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C		0	0	0	0	0	0	c		0	c		Ballasting	Dollocting
VCG fluid	FS correction	Total Loadcase		Subtotal Cargo	Stores	Passenger Load	Vehicle Load		Subtotal Waste	CLN BILGE 2.S	CLN BILGE 2.P	OILY BILGE 2.S	OILY BILGE 2.P	CLN BILGE 1.S	CLN BILGE 1.P	OILY BILGE 1.S	OILY BILGE 1.P	WASTE OIL.S	WASTE OIL.P	BWT.S	BWT.P		Consumables	LUBE OILS	LUBE OIL.P	TWI.S		item Name	Itom Nama
										Fresh Water	Fresh Water	Slops	Slops	Fresh Water	rresn Water	Slops	Slops	Slops	Slops	Custom 3	Custom 3			Lube Oil	Lube Oil	⊢resh Water	1	type	Π
					0	0	0		95.8%	100%	100%	%86	%86	100%	%001.	%86	%86	98%	%86	95%	95%		10.70	10%	10%	%UF		Quantity	Dupptity
					1.000	130.000	387.000		101.449	1.086	1.086	4.911	4.911	1.094	1.094	4.909	4.909	0.130	0.130	38.594	38.594		17.020	1.311	1.311	669.7	tonne	Mass	
		2000.172		0.000	0.000	0.000	0.000		97.192	1.086	1.086	4.813	4.813	1.094	1.094	4.811	4.811	0.128	0.128	36.664	36.664		1.702	0.131	0.131	0.760	tonne	I otal Mass	Total
		1363.029							103.345	1.086	1.086	5.379	5.379	1.094	7.094	5.377	5.377	0.143	0.143	38.594	38.594		10.040	10.040	1.425	1.599	m^3	Volume	
		413.278							99.050	1.086	1.086	5.272	5.272	1.094	1.094	5.269	5.269	0.140	0.140	36.664	36.664		1.000	0.142	0.142	0.760	m^3	Volume	
		-42.529		0.000	-26.625	-31.761	-49.775		-31.948	-66.364	-66.364	-66.375	-66.375	-59.625	-59.625	-59.625	-59.625	-53.875	-53.875	-21.875	-21.875		-200.10-2	-50.625	-50.625	-35.625	В	Arm	222
		-0.019		0.000	4.825	0.000	0.000		0.000	7.481	-7.481	8.389	-8.389	10.806	-10.806	9.898	-9.898	10.852	-10.852	9.125	-9.125		0.000	10.852	-10.852	9.143	я	Arm	Trano
6.303	0.273	6.031		0.000	11.000	10.500	8.500		2.095	1.003	1.003	0.990	0.990	1.000	1.000	0.990	0.990	1.990	1.990	2.450	2.450		1.007	1.600	1.600	1.550	m	Arm	104
		545.501		0.000	0.000	0.000	0.000		35.758	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	17.879	17.879		0.107	0.021	0.021	3.033	tonne.m	FSM	Totol
					User Specified	User Specified	User Specified			Maximum	Maximum	Maximum	Maximum	Maximum			Maximum	Maximum	Maximum		гом туре	EOM TUND							

Heel to Starboard deg	-30.0	-20.0	-10.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
GZ m	-6.694	-7.711	-6.233	0.019	6.270	7.747	6.728	5.519	4.165	2.750	1.303	-0.221	-1.802
Area under GZ curve from zero	180.0149	107.1299	33.8081	0.0000	34.1805	107.8937	181.0282	242.2485	290.7944	325.3801	345.6907	351.1628	341.0738
heel m.deg													
Displacement t	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Draft at FP m	0.459	2.393	3.004	2.726	3.005	2.394	0.465	-1.821	-4.701	-8.868	-16.281	-37.048	n/a
Draft at AP m	-1.862	0.179	2.037	2.738	2.037	0.179	-1.866	-4.459	-8.104	-13.952	-25.391	-58.601	n/a
WL Length m	89.670	89.671	91.931	88.482	91.931	89.671	89.671	89.692	89.770	89.960	90.611	90.932	90.957
Beam max extents on WL m	13.081	13.094	24.643	25.052	24.643	13.094	13.082	13.105	13.574	12.446	10.948	10.143	10.000
Wetted Area m ²	1128.079	1121.884	1413.528	1509.825	1415.113	1122.915	1128.955	1152.062	1211.896	1286.854	1343.724	1382.739	1428.630
Waterpl. Area m ²	624.777	603.733	900.386	1000.028	900.774	603.729	624.611	621.851	637.504	668.501	663.506	633.625	583.273
Prismatic coeff. (Cp)	0.748	0.747	0.730	0.721	0.730	0.747	0.748	0.738	0.704	0.650	0.603	0.563	0.525
Block coeff. (Cb)	0.524	0.524	0.366	0.583	0.366	0.524	0.524	0.510	0.475	0.453	0.507	0.519	0.406
LCB from zero pt. (+ve fwd) m	-42.357	-42.373	-42.471	-42.526	-42.473	-42.374	-42.347	-42.330	-42.288	-42.231	-42.153	-42.078	-42.019
LCF from zero pt. (+ve fwd) m	-48.039	-48.575	-45.738	-47.769	-45.719	-48.574	-48.037	-48.944	-49.769	-50.547	-50.887	-50.274	-49.099
Max deck inclination deg	30.0247	20.0420	10.0182	0.0075	10.0182	20.0420	30.0249	40.0172	50.0142	60.0132	70.0125	80.0087	90.0000
Trim angle (+ve by stern) deg	-1.4769	-1.4093	-0.6157	0.0075	-0.6156	-1.4098	-1.4836	-1.6787	-2.1655	-3.2328	-5.7800	-13.4677	n/a

Key point	Туре	Immersion angle deg	Emergence angle deg	Freebd at 0.0 deg	Freeboard at 10.0 deg m	Freeboard at 20.0 deg m	Freeboard at 30.0 deg m	Freeboard at 40.0 deg m	Freeboard at 50.0 deg m	Freeboard at 60.0 deg m
				m						
Margin Line		26.7	n/a	4.185	1.894	0.424	-0.218	-0.906	-1.646	-2.395
(immersion pos = -19.417 m)										
Deck Edge		27.7	n/a	4.261	1.969	0.495	-0.152	-0.848	-1.598	-2.357
(immersion pos = -19.417 m)										
Aft Stbd Stair	Downflooding point	Not immersed in + range	0	4.263	3.114	2.898	2.636	2.347	2.064	1.827
Aft Port Stair	Downflooding	Not immersed	0	4.263	6.491	9.549	12.358	14.846	16.959	18.665
	-		5	000	000		0.000	0.000	100	0 011
Fwd Stbd Stair	Downflooding point	55.2	0	4.273	2.317	1.154	0.962	0.686	0.274	-0.255
Fwd Port Stair	Downflooding point	Not immersed in + range	0	4.273	5.658	7.732	10.579	13.049	15.007	16.399
Aft Air Intake Stbd	Downflooding point	75.9	0	11.331	9.456	8.303	7.043	5.611	4.065	2.481
Aft Air Intake Port	Downflooding point	Not immersed in + range	0	11.331	13.896	17.047	19.825	22.042	23.647	24.617
Fwd Air Intake Stbd	Downflooding point	75.9	0	11.331	9.456	8.303	7.043	5.611	4.065	2.481
Fwd Air Intake	Downflooding	Not immersed	0	11.331	13.896	17.047	19.825	22.042	23.647	24.617
r Ult	politic	afile 1 - 11								

Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3.1513	m.deg	181.0282	Pass	+5644.56
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5.1566	m.deg	242.2485	Pass	+4597.83
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1.7189	m.deg	61.2203	Pass	+3461.60
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0.200	m	6.728	Pass	+3264.00
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0.150	m	39.255	Pass	+26070.00
267(85) Ch2 - General Criteria	2.3: Severe wind and rolling				Pass	
	Area1 / Area2 shall not be less than (>=)	100.00	%	457.29	Pass	+357.29
3.1 Passenger Ships	3.1.1: Passenger crowding: angle of equilibrium	10.0	deg	0.4	Pass	+96.24
3.1 Passenger Ships	3.1.2: Turn: angle of equilibrium	10.0	deg	0.1	Pass	+99.01
267(85) Ch2 - General Criteria	MSC 1281 Alt Max GZ	15.0	deg	18.2	Pass	+21.21
267(85) Ch2 - General Criteria	MSC 1281 Alt Max GZ Area	0.0700	m.deg	93.7780	Pass	+133868.55

Ballasti 0 0	ng Item Name Lightship Subtotal lightship FPT.S	Fluid type	Quantity 1	Unit Mass tonne 1582.976 55.448	Total Mass tonne 1582.976 1582.976 0.000	Unit Wolume 54.095	Total Volume 0.000	Long. Arm -42.695 -42.695 -4.853	Trans. Arm -0.024 -0.024 6.103	Vert. Arm 7.331 7.331 0.025	Total FSM 0.000 0.000	FSM 1 Maximu
00	FPT.P SWBT1.P	Sea Water Sea Water	0% 0%	55.448 81.859	0.000	54.095 79.863	0.000	-4.853 -25.769	-6.103 -9.153	0.025	0.000	Ma
0	SWBT1.S	Sea Water	0%	81.859	0.000	79.863	0.000	-25.769	9.153	0.000	0.000	Ma
0	SWBT2.P	Sea Water	50%	111.052	55.526	108.343	54.172	-40.739	-9.163	0.486	270.143	Ma
0	SWBT2.S	Sea Water	50%	111.052	55.526	108.343	54.172	-40.739	9.163	0.486	270.143	SN
0	SWBT3.P	Sea Water	100%	86.986	86.986	84.864	84.864	-55.135	-9.068	0.856	0.000	Ма
0	SWBT3.S	Sea Water	100%	86.986	86.986	84.864	84.864	-55.135	9.068	0.856	0.000	Ma
0	SWBT4.P	Sea Water	0%	46.929	0.000	45.784	0.000	-62.511	-6.103	0.096	0.000	Ma
0	SWBT4.S	Sea Water	0%	46.929	0.000	45.784	0.000	-62.511	6.103	0.096	0.000	Ma
0	APT.P	Sea Water	0%	198.339	0.000	193.501	0.000	-76.499	-6.102	1.353	0.000	Ma
0	APT.S	Sea Water	0%	198.339	0.000	193.501	0.000	-76.499	6.102	1.353	0.000	Ma
0	Subtotal Ballast		24.55%	1161.225	285.023	1132.902	278.072	-49.526	0.000	0.712	540.285	
0												
0	MGO 1.P	Diesel	43.06%	39.900	17.181	47.500	20.453	-29.375	-9.152	1.931	28.000	Ma
0	MGO 1.S	Diesel	43.06%	39.900	17.181	47.500	20.453	-29.375	9.152	1.931	28.000	Ma
0	MGO SETT.P	Diesel	%86	3.605	3.533	4.292	4.206	-50.625	-8.372	2.480	0.000	Ma
0	MGO SETT.S	Diesel	98%	3.605	3.533	4.292	4.206	-50.625	8.372	2.480	0.000	Ma
0	MGO SERV.P	Diesel	%86	2.163	2.120	2.575	2.523	-53.375	-8.372	2.480	0.000	Ma
0	MGO SERV.S	Diesel	%86	2.163	2.120	2.575	2.523	-53.375	8.372	2.480	0.000	Max
0	Subtotal MGO		50%	91.336	45.667	108.733	54.366	-34.891	0.000	2.067	56.000	
0												
0	FWT.P	Fresh Water	50%	7.599	3.800	7.599	3.800	-35.625	-9.143	1.750	3.033	Ma
0	FWT.S	Fresh Water	50%	7.599	3.800	7.599	3.800	-35.625	9.143	1.750	3.033	Ma
0	LUBE OIL.P	Lube Oil	50%	1.311	0.656	1.425	0.713	-50.625	-10.852	2.000	0.021	Ma
0	LUBE OIL.S	Lube Oil	50%	1.311	0.656	1.425	0.713	-50.625	10.852	2.000	0.021	Max
0	Subtotal Consumables		50%	17.820	8.910	18.048	9.024	-37.832	0.000	1.787	6.107	
0												
0	WASTE OIL P	Slops	50%	0.130	0.065	0.143	0.071	-53.875	-10 852	1.750	0.004	Max

Loadcase - 50% Cargo, 50% Consumables Damage Case - Intact Free to Trim Specific gravity = 1.025; (Density = 1.025 tonne/m^3) Fluid analysis method: Use corrected VCG

				_					_			_	·					-	_	_	
Ballasting	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Item Name	WASTE OIL.S	BWT.P	BWT.S	OILY BILGE 1.P	OILY BILGE 1.S	CLN BILGE 1.P	CLN BILGE 1.S	OILY BILGE 2.P	OILY BILGE 2.S	CLN BILGE 2.P	CLN BILGE 2.S	Subtotal Waste		Vehicle Load	Passenger Load	Stores	Subtotal Cargo		Total Loadcase	FS correction	VCG fluid
Fluid type	Slops	Custom 3	Custom 3	Slops	Slops	Fresh Water	Fresh Water	Slops	Slops	Fresh Water	Fresh Water										
Quantity	50%	50%	50%	0%	0%	0%	0%	%86	98%	100%	100%	49.8%		0.5	0.5	0.5					
Unit Mass tonne	0.130	38.594	38.594	4.909	4.909	1.094	1.094	4.911	4.911	1.086	1.086	101.449		387.000	130.000	1.000					
Total Mass tonne	0.065	19.297	19.297	0.000	0.000	0.000	0.000	4.813	4.813	1.086	1.086	50.523		193.500	65.000	0.500	259.000		2232.099		
Unit Volume m^3	0.143	38.594	38.594	5.377	5.377	1.094	1.094	5.379	5.379	1.086	1.086	103.345							1363.029		
Total Volume m^3	0.071	19.297	19.297	0.000	0.000	0.000	0.000	5.272	5.272	1.086	1.086	51.452							392.913		
Long. Arm m	-53.875	-21.875	-21.875	-59.625	-59.625	-59.625	-59.625	-66.375	-66.375	-66.364	-66.364	-32.349		-49.775	-31.761	-26.625	-45.209		-43.446		
Trans. Arm m	10.852	-9.125	9.125	-9.898	9.898	-10.806	10.806	-8.389	8.389	-7.481	7.481	0.000		0.000	0.000	4.825	0.009		-0.016		
Vert. Arm m	1.750	2.000	2.000	0.500	0.500	0.500	0.500	0.990	0.990	1.003	1.003	1.764		8.500	10.500	11.000	9.007		6.424	0.290	6.714
Total FSM tonne.m	0.004	17.879	17.879	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	35.767		4.250	5.250	0.000	9.500		647.659		
FSM Type	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum			User Specified	User Specified	User Specified					

Heel to Starboard deg	-30.0	-20.0	-10.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
GZ m	-6.551	-7.613	-5.772	0.016	5.803	7.643	6.579	5.312	3.914	2.468	0.965	-0.615	-2.246
Area under GZ curve from zero	173.3138	101.2301	30.9072	0.0000	31.2110	101.8825	174.0832	233.4434	279.7063	311.6288	328.8576	330.6679	316.3882
Displacement t	2222	2222	2222	2222	2222	2222	2222	2222	2222	ວງວຽງ	2222	2222	2222
Displacement t	2232	2232	2232	2232	2232	2232	2232	1 1 10	2232	2232	15 007	2232	2232
Draft of AD m	1 260	0 6 4 0 C E O 2	3.129	2.000	3.131	2.094	1 262	-1.41U	-4.171	-0.100	102.201-	-34.8/3	n/a
WI Length m	-1.JUU 80 7/1	80 740	01 0/1	00 077	01 0/1	80 730	- 1.JUZ	-0.921	02U.1-	00 150	00 788	-00.029	00 023
Beam max extents on WL m	13.285	13.228	24.863	25.150	24.862	13.228	13.286	13.472	13.576	12.450	10.863	10.125	9.997
Wetted Area m ²	1201.920	1192.896	1506.895	1625.563	1508.649	1193.972	1202.885	1234.566	1299.692	1369.333	1418.669	1462.778	1514.988
Waterpl. Area m^2	621.862	624.719	941.905	1056.862	942.264	624.723	621.693	614.242	630.841	657.861	637.031	589.235	541.257
Prismatic coeff. (Cp)	0.763	0.763	0.738	0.716	0.738	0.763	0.763	0.745	0.704	0.656	0.612	0.574	0.537
Block coeff. (Cb)	0.542	0.543	0.382	0.579	0.382	0.543	0.542	0.521	0.479	0.473	0.522	0.531	0.424
LCB from zero pt. (+ve fwd) m	-43.284	-43.299	-43.410	-43.455	-43.402	-43.306	-43.282	-43.255	-43.203	-43.144	-43.073	-42.996	-42.950
LCF from zero pt. (+ve fwd) m	-49.269	-48.758	-46.227	-49.518	-46.204	-48.761	-49.273	-50.478	-51.327	-52.158	-51.988	-51.194	-49.341
Max deck inclination deg	30.0210	20.0359	10.0102	0.0759	10.0103	20.0358	30.0211	40.0157	50.0138	60.0135	70.0128	80.0088	90.0000
Trim angle (+ve by stern) deg	-1.3610	-1.3033	-0.4604	0.0759	-0.4628	-1.3013	-1.3647	-1.6021	-2.1362	-3.2687	-5.8469	-13.5163	n/a

							in + range	point	
23.282	21.652	19.418	16.634	13.577	11.080	0	Not immersed	Downflooding	Fwd Air Intake Port
3.700	5.220	6.635	7.890	9.137	11.080	0	73.7	Downflooding point	Fwd Air Intake Stbd
23.282	21.652	19.418	16.634	13.577	11.080	0	Not immersed in + range	Downflooding point	Aft Air Intake Port
3.700	5.220	6.635	7.890	9.137	11.080	0	73.7	Downflooding point	Aft Air Intake Stbd
14.665	12.730	10.295	7.442	5.520	4.104	0	Not immersed in + range	Downflooding point	Fwd Port Stair
-0.068	0.366	0.678	0.863	2.180	4.104	0	48.4	Downflooding point	Fwd Stbd Stair
16.592	14.447	11.936	9.121	6.151	4.003	0	Not immersed in + range	Downflooding point	Aft Port Stair
1.697	1.948	2.213	2.470	2.774	4.003	0	Not immersed in + range	Downflooding point	Aft Stbd Stair
-1.945	-1.186	-0.464	0.183	1.795	3.992	n/a	22.9		Deck Edge (immersion pos = - 18.488 m)
-1.994	-1.244	-0.530	0.112	1.720	3.916	n/a	21.8		Margin Line (immersion pos = - 17.56 m)
 FreeBd at 50.0 deg m	FreeBd at 40.0 deg m	FreeBd at 30.0 deg m	FreeBd at 20.0 deg m	FreeBd at 10.0 deg m	FreeBd at 0.0 deg m	Emergence angle deg	Immersion angle deg	Туре	Key point

Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3.1513	m.deg	174.0832	Pass	+5424.17
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5.1566	m.deg	233.4434	Pass	+4427.08
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1.7189	m.deg	59.3602	Pass	+3353.38
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0.200	m	6.579	Pass	+3189.50
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0.150	m	36.562	Pass	+24274.67
267(85) Ch2 - General Criteria	2.3: Severe wind and rolling				Pass	
	Area1 / Area2 shall not be less than (>=)	100.00	%	434.59	Pass	+334.59
3.1 Passenger Ships	3.1.1: Passenger crowding: angle of equilibrium	10.0	deg	0.4	Pass	+96.26
3.1 Passenger Ships	3.1.2: Turn: angle of equilibrium	10.0	deg	0.1	Pass	+98.80
267(85) Ch2 - General Criteria	MSC 1281 Alt Max GZ	15.0	deg	20.0	Pass	+33.33
267(85) Ch2 - General Criteria	MSC 1281 Alt Max GZ Area	0.0700	m.deg	101.8827	Pass	+145446.69

												0
											Consumables	
	0.000	2.069	0.000	-37.794	17.991	18.048	17.768	17.820	99.71%		Subtotal	0
Maximum	0.000	2.480	10.852	-50.625	1.397	1.425	1.285	1.311	%86	Lube Oil	LUBE OIL.S	0
Maximum	0.000	2.480	-10.852	-50.625	1.397	1.425	1.285	1.311	%86	Lube Oil	LUBE OIL.P	0
Maximum	0.000	2.000	9.143	-35.625	7.599	7.599	7.599	7.599	100%	Fresh Water	FWT.S	0
Maximum	0.000	2.000	-9.143	-35.625	7.599	7.599	7.599	7.599	100%	Fresh Water	FWT.P	0
												0
	0.000	2.480	0.000	-32.189	106.559	108.733	89.509	91.336	%86		Subtotal MGO	0
Maximum	0.000	2.480	8.372	-53.375	2.523	2.575	2.120	2.163	%86	Diesel	MGO SERV.S	0
Maximum	0.000	2.480	-8.372	-53.375	2.523	2.575	2.120	2.163	%86	Diesel	MGO SERV.P	0
Maximum	0.000	2.480	8.372	-50.625	4.206	4.292	3.533	3.605	%86	Diesel	MGO SETT.S	0
Maximum	0.000	2.480	-8.372	-50.625	4.206	4.292	3.533	3.605	%86	Diesel	MGO SETT.P	0
Maximum	0.000	2.480	9.152	-29.375	46.550	47.500	39.102	39.900	%86	Diesel	MGO 1.S	0
Maximum	0.000	2.480	-9.152	-29.375	46.550	47.500	39.102	39.900	%86	Diesel	MGO 1.P	0
												0
	540.285	0.315	0.437	-40.727	61.621	1132.902	63.161	1161.225	5.44%		Subtotal Ballast	0
Maximum	0.000	1.353	6.102	-76.499	0.000	193.501	0.000	198.339	0%	Sea Water	APT.S	0
Maximum	0.000	1.353	-6.102	-76.499	0.000	193.501	0.000	198.339	0%	Sea Water	APT.P	0
Maximum	0.000	0.096	6.103	-62.511	0.000	45.784	0.000	46.929	0%	Sea Water	SWBT4.S	0
Maximum	0.000	0.096	-6.103	-62.511	0.000	45.784	0.000	46.929	0%	Sea Water	SWBT4.P	0
Maximum	0.000	0.001	6.103	-48.801	0.000	84.864	0.000	86.986	0%	Sea Water	SWBT3.S	0
Maximum	0.000	0.001	-6.103	-48.801	0.000	84.864	0.000	86.986	0%	Sea Water	SWBT3.P	0
Maximum	270.143	0.326	9.158	-40.728	32.280	108.343	33.087	111.052	29.79%	Sea Water	SWBT2.S	0
Maximum	270.143	0.303	-9.156	-40.726	29.341	108.343	30.075	111.052	27.08%	Sea Water	SWBT2.P	0
Maximum	0.000	0.000	9.153	-25.769	0.000	79.863	0.000	81.859	0%	Sea Water	SWBT1.S	0
Maximum	0.000	0.000	-9.153	-25.769	0.000	79.863	0.000	81.859	0%	Sea Water	SWBT1.P	0
Maximum	0.000	0.025	-6.103	-4.853	0.000	54.095	0.000	55.448	0%	Sea Water	FPT.P	0
Maximum	0.000	0.025	6.103	-4.853	0.000	54.095	0.000	55.448	0%	Sea Water	FPT.S	0
												0
	0.000	7.331	-0.024	-42.695			1582.976				Subtotal Lightship	0
	0.000	7.331	-0.024	-42.695			1582.976	1582.976	_		Lightship	0
	tonne.m	в	в	я	m^3	m^3	tonne	tonne				
	FSM	Arm	Arm	Arm	Volume	Volume	Mass	Mass	ļ	type		(
FSM Type	Total	Vert.	Trans.	Long.	Total	Unit	Total	Unit	Quantity	Fluid	Item Name	Ballasting

Loadcase - 100% Cargo, 100% Consumables Damage Case - Intact Free to Trim Specific gravity = 1.025; (Density = 1.025 tonne/m^3) Fluid analysis method: Use corrected VCG

	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		BWT.P	BWT.S	WASTE OIL.P	WASTE OIL.S	OILY BILGE 1.P	OILY BILGE 1.S	CLN BILGE 1.P	CLN BILGE 1.S	OILY BILGE 2.P	OILY BILGE 2.S	CLN BILGE 2.P	CLN BILGE 2.S	Subtotal Waste		Vehicle Load	Passenger Load	Stores	Subtotal Cargo			Total Loadcase	FS correction	VCG fluid
type	Cintom o	Custom 3	Custom 3	Slops	Slops	Slops	Slops	Fresh Water	Fresh	Slops	Slops	Fresh Water	Fresh Water											
	10%	10%	10%	10%	10%	0%	0%	0%	%0	20%	20%	20%	20%	10%			1	1						
Mass	20 EO A	38.594	38.594	0.130	0.130	4.909	4.909	1.094	1.094	4.911	4.911	1.086	1.086	101.449		387.000	130.000	1.000						
Mass	o o co	3.859	3.859	0.013	0.013	0.000	0.000	0.000	0.000	0.982	0.982	0.217	0.217	10.144		387.000	130.000	1.000	518.000			2281.558		
Wolume	20 ED1	38.594	38.594	0.143	0.143	5.377	5.377	1.094	1.094	5.379	5.379	1.086	1.086	103.345								1363.029		
Volume	2 0ED	3.859	3.859	0.014	0.014	0.000	0.000	0.000	0.000	1.076	1.076	0.217	0.217	10.333								196.504		
Arm	01 07E	-21.875	-21.875	-53.875	-53.875	-59.625	-59.625	-59.625	-59.625	-66.375	-66.375	-66.322	-66.322	-32.479		-49.775	-31.761	-26.625	-45.209			-42.716		
Arm	n 105	-9.125	9.125	-10.852	10.852	-9.898	9.898	-10.806	10.806	-8.389	8.389	-7.483	7.483	0.000		0.000	0.000	4.825	0.009			-0.003		
Arm	1 EDD	1.600	1.600	1.550	1.550	0.500	0.500	0.500	0.500	0.600	0.600	0.605	0.605	1.364		8.500	10.500	11.000	9.007			7.259	0.253	7.513
FSM	17 070	17.879	17.879	0.004	0.004	0.000	0.000	0.000	0.000	0.982	0.982	0.009	0.009	37.749		0.000	0.000	0.000	0.000			578.035		
	Movimum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum	Maximum			User Specified	User Specified	User Specified						

Heel to Starboard deg	-30.0	-20.0	-10.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
GZ m	-6.174	-7.367	-5.484	0.000	5.487	7.372	6.178	4.791	3.289	1.753	0.182	-1.437	-3.072
Area under GZ curve from zero	165.9934	96.8522	29.2882	0.0000	29.2898	96.9542	165.9273	220.6279	261.1586	286.3686	296.0869	289.8410	267.2997
heel m.deg													
Displacement t	2282	2282	2282	2282	2281	2282	2282	2282	2282	2282	2282	2282	2282
Draft at FP m	1.230	3.073	3.358	3.110	3.360	3.071	1.230	-0.855	-3.478	-7.223	-13.766	-31.989	n/a
Draft at AP m	-1.563	0.476	2.289	2.909	2.287	0.478	-1.563	-4.169	-7.829	-13.698	-25.055	-57.777	n/a
WL Length m	89.863	89.845	91.948	88.875	91.948	89.845	89.863	89.933	90.086	90.488	90.925	90.965	90.991
Beam max extents on WL m	13.439	13.301	24.898	25.149	24.898	13.301	13.439	13.882	13.574	12.440	10.942	10.120	9.996
Wetted Area m ²	1224.490	1211.419	1529.895	1636.080	1529.896	1212.526	1225.397	1264.905	1330.191	1398.179	1451.461	1498.312	1551.825
Waterpl. Area m ²	601.465	626.602	946.229	1043.880	946.594	626.670	601.447	592.558	608.803	632.699	615.888	569.512	528.945
Prismatic coeff. (Cp)	0.743	0.749	0.733	0.733	0.733	0.749	0.743	0.718	0.670	0.624	0.583	0.547	0.512
Block coeff. (Cb)	0.520	0.523	0.373	0.574	0.373	0.523	0.520	0.497	0.455	0.453	0.498	0.495	0.402
LCB from zero pt. (+ve fwd) m	-42.478	-42.510	-42.649	-42.696	-42.642	-42.519	-42.483	-42.447	-42.400	-42.331	-42.245	-42.177	-42.139
LCF from zero pt. (+ve fwd) m	-49.860	-48.424	-45.977	-48.959	-45.954	-48.424	-49.862	-51.196	-52.202	-53.083	-52.978	-52.270	-50.708
Max deck inclination deg	30.0358	20.0577	10.0222	0.1277	10.0224	20.0576	30.0358	40.0271	50.0232	60.0214	70.0192	80.0125	90.0000
Trim angle (+ve by stern) deg	-1.7774	-1.6527	-0.6808	-0.1277	-0.6828	-1.6502	-1.7774	-2.1088	-2.7680	-4.1155	-7.1494	-15.9887	n/a

CANTRANT OF THE	

STLLIS DES
in the second
Mar LO Noo
I'me Neval A'C

Varia a link				Funchernd	Purchasud at	Functional at	Funch and at	Funchesul of	Funch soud of	Purchased at
ney point	- 3 pro	deg	angle deg	at 0.0 deg	10.0 deg m	20.0 deg	30.0 deg	40.0 deg	50.0 deg	60.0 deg
Margin Line		19.1	n/a	3.815	1.564	-0.151	-0.794	-1.524	-2.285	-3.050
(immersion										
pos = -14.774 m)										
Deck Edge		19.5	n/a	3.891	1.638	-0.079	-0.729	-1.466	-2.236	-3.012
(immersion										
m)										
Aft Stbd Stair	Downflooding	Not immersed in	0	4.073	2.858	2.585	2.337	2.079	1.833	1.638
	point	+ range								
Aft Port Stair	Downflooding	Not immersed in	0	4.073	6.236	9.234	12.059	14.576	16.725	18.472
Fwd Stbd	Downfloodina	39.3	0	3.902	1.973	0.537	0.321	-0.024	-0.478	-1.038
Stair	point									
Fwd Port	Downflooding	Not immersed in	0	3.902	5.313	7.114	9.937	12.337	14.252	15.611
Stair	point	+ range								
Aft Air Intake	Downflooding	74.2	0	11.122	9.191	7.957	6.708	5.295	3.778	2.230
Stbd	point									
Aft Air Intake	Downflooding	Not immersed in	0	11.122	13.631	16.700	19.488	21.725	23.357	24.360
Port	point	+ range								
Fwd Air	Downflooding	74.2	0	11.122	9.191	7.957	6.708	5.295	3.778	2.230
Intake Stbd	point									
Fwd Air	Downflooding	Not immersed in	0	11.122	13.631	16.700	19.488	21.725	23.357	24.360
Intake Port	point	positive range								

)	
Value	Units	Actual	Status	Margin %
3.1513	m.deg	165.9273	Pass	+5165.36
5.1566	m.deg	217.2279	Pass	+4112.62
1.7189	m.deg	51.3007	Pass	+2884.51
0.200	m	6.178	Pass	+2989.00
0.150	m	34.382	Pass	+22821.33
			Pass	
100.00	%	365.35	Pass	+265.35
librium 10.0	deg	0.4	Pass	+95.84
10.0	deg	0.2	Pass	+98.18
15.0	deg	20.0	Pass	+33.33
0010 0	m.deg	96.9542	Pass	+138406.05
3.1513 5.1566 0.200 0.150 0.150 10.00 10.0 10.0 10.0	m.deg m.deg m.deg m.deg deg deg deg deg		65.9273 51.3007 6.178 34.382 365.35 365.35 0.4 0.2 0.2 0.2	65.9273 Pass 51.3007 Pass 6.178 Pass 34.382 Pass 34.382 Pass 365.35 Pass 0.4 Pass 0.2 Pass 0.2 Pass 20.0 Pass 20.0 Pass

Appendix G: Probabilistic Damage Stability

Damage Stability Analysis GHS DAMSTAB2 Wizard version 18.90 GHS DAMSTAB2 Library version 18.90

Probabilistic Damage

RoPax 90m Ferry

STARBOARD-side Probabilistic Passenger SOLAS 2020

Including Heeling Moments: Calculated wind heeling moments 650 passengers crowding 0 METRIC TONS-METERS Life-boat moment

Including Intermediate Stages of Flooding Intermediate flooding tanks are considered flooded for de/activating critical points with tank references and and flooded permeability overrides.

If garage space () damaged then TZrange=20, TGZmax=0.20.

Variable Trial VCG

Condition Graphic

	DIVISION definitions										
Division	Fwd End	Aft End	Wing	HBhd	Parts						
1	1.941f	0.092f	U		FPT.S						
2	0.092f	5.000a			FPT.S FOCSLE.S						
3	5.000a	11.250a			BT RM 1A.S						
					AUXMACH_1B.S FOCSLE.S						
4	11.250a	13.750a			BT_RM_1B.S						
					AUXMACH_1A.S FOCSLE.S						
5	13.750a	18.750a			BT_RM_1B.S						
					AUXMACH_1A.S						
6	18.750a	32.500a			SWBT1.S BWT.S TT_1.S						
	~~ ~~~				MID_MACH_1.S						
7	32.500a	48.750a			SWB12.S FW1.S 11_2.S						
	40 750-	50 050-			MID_MACH_2.S						
8	48.750a	56.250a			SWB13.5 MGO_SETT.5						
					MASTE OU S						
					UBE OILS TT3 S						
					MID MACH 3 S						
9	56 250a	62 500a			SWBT3 S						
	00.2004	02.0004			OILY BILGE 1.S						
					CLN BILGE 1.S						
					ENG RM 1.S						
					MID MACH 3.S						
10	62.500a	76.250a			SWBT4.S						
					OILY_BILGE_2.S						
					CLN_BILGE_2.S						
					MID_MACH_4.S						
					ENG_RM_2.S						
11	76.250a	90.000a			APT.S STGEAR.S						
Distances in METERS.											

Page 3 RUN2

Division 1

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Plan	View								[2
Prof	ile View										
											2
Body	@ 1.147f		Body @	1.408f		Body (1.670f		Body	0 1.9	931f
0		Q	0		∩ 2	0		â			ż
Body	@ 0.102f		Body @	0.363f		Body (0.625f		Body	0.8	886f
	I	$\overline{\mathbf{v}}$			$\overline{}$, 					
0		2	0			0		(₂)	0		Q

Page 4 RUN2

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

120

Page 5 RUN2

Division 3

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Tanks 60 AUXMACH_1B.S.100% SEA WATER Intact 54 BT_RM_1A.S...100% SEA WATER Intact 62 FOCSLE.S....100% SEA WATER Intact

Page 6 RUN2

Division 4

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Tanks 58 AUXMACH_1A.S.100% SEA WATER Intact 56 BT_RM_1B.S...100% SEA WATER Intact 62 FOCSLE.S....100% SEA WATER Intact

Page 7 RUN2

Division 5

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Page 8 RUN2

Division 6

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

 Tanks
 21 BWT.S.....100% SEA WATER Intact35 MID_MACH_1.S.100% SEA WATER Intact

 4 SWBT1.S.....100% SEA WATER Intact33 TT_1.S.....100% SEA WATER Intact
 124

Page 9 RUN2

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

 Tanks
 15 FWT.S.....100% SEA WATER Intact39 MID_MACH_2.S.100% SEA WATER Intact

 5 SWBT2.S.....100% SEA WATER Intact37 TT_2.S.....100% SEA WATER Intact
 125

Page 10 RUN2

Division 8

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

 TAILKS
 13 MGO_SERV.S...100% SEA WATER Intact41 TT3.S......100% SEA WATER Intact

 6 SWBT3.S.....100% SEA WATER Intact17 WASTE_OIL.S..100% SEA WATER Intact45 MID_MACH_3.S.100% SEA WATER Intact

 11 MGO_SETT.S...100% SEA WATER Intact19 LUBE_OIL.S...100% SEA WATER Intact

 126

Page 11 RUN2

Division 9

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Tanks23 OILY_BILGE_1.S.100% SEA WATER 43 ENG_RM_1.S....100% SEA WATER6 SWBT3.S.....100% SEA WATER 25 CLN_BILGE_1.S.100% SEA WATER 45 MID_MACH_3.S...100% SEA WATER

127

Division 10

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Tanks27 OILY_BILGE_2.S.100% SEA WATER 47 MID_MACH_4.S...100% SEA WATER8 SWBT4.S.....100% SEA WATER 29 CLN_BILGE_2.S..100% SEA WATER 49 ENG_RM_2.S....100% SEA WATER

128

Division 11

Condition Graphic - Draft: -99.000 Trim: zero Heel: zero

Downflooding Points

	Critical Points		LCP	TCP	VCP
(1)	Aft Stbd Stair	FLOOD	73.750a	11.057s	10.000
(2)	Aft Port Stair	FLOOD	73.750a	11.057p	10.000
(3)	Fwd Stbd Stair	FLOOD	6.250a	7.843s	10.000
(4)	Fwd Port Stair	FLOOD	6.250a	7.843p	10.000
(5)	Aft Air Intake Stbd	FLOOD	73.895a	12.785s	14.067
(6)	Aft Air Intake Port	FLOOD	73.895a	12.785p	14.067
(7)	Fwd Air Intake Stbd	FLOOD	73.895a	12.785s	14.067
(8)	Fwd Air Intake Port	FLOOD	73.895a	12.785p	14.067
(9)	Aft Mech Door Stbd	FLOOD	62.500a	10.226s	7.000
(10)	Aft Mech Door Port	FLOOD	62.500a	10.226p	7.000
Dista	nces in METERS.				

Page 15 RUN2

Light-service draft (dl)

WEIGHT STATUS										
Part	Weight(MT) LCG TCG VCG									
Distances in METERS.	1,999.00 42.000 0.000 20.000									
Draft at LCF: 2.754 Draft at mid subdivision length:	2.758									
Condition Graphic - Draft: 2.809	9 @ 0.000 Trim: fwd 0.07 deg. Heel: zero									
Profile View										
	0 0 5									
Plan View										

Light-service draft (dl)

Executing DAMSTAB /sdi421P /side:STARBOARD /L:-1.941,90 /B:25.57 /DLL:3 /N:650,0 /macro:PROBSURV

	PROBABILISTIC DAMAGE STABILITY MSC.421(98)								
	Subdivi	Passeng	ger Vess 14 1	el Version	1 0/1f	00.0002			
	Subulvi	Breadth: 25	570	Draft 2	. 1.9411, 758	90.000a			
		Subdivision	n load line	e draft: 3.	000				
			i iouu iii						
Divisions	Р	Smin P*S*V	Α	Depth	Trim	Heel	Range	MaxRA	
None	0.0000	1.000 0.000	0.000	2.809	0.07f	0.00	20.71	2.590	
1	0.01112	1.000* 0.011	0.011	2.983	0.24f	0.46s	20.31	2.368	
2	0.01502	1.000* 0.015	0.026	2.983	0.24f	0.46s	20.31	2.366	
3	0.02199	1.000 * 0.022	0.048	3.078	0.33f	0.80s	20.00	2.116	
4	0.00385	1.000 * 0.004	0.052	3.215	0.46f	1.40s	19.19	1.822	
5	0.01451	1.000 * 0.015	0.067	3.215	0.461	1.40s	19.36	1.822	
6	0.08659	1.000 0.087	0.153	3.540	0.741	3.23s	17.01	1.240	
1	0.11184	0.990* 0.111	0.264	3.530	0.591	5.355	15.37	1.178	
8	0.03069	1.000 0.031	0.294	2.900	0.00	2.305	10.40	2.000	
9	0.02199	1.000 0.022	0.310	2.040	0.05a	2.005	10.72	2.210	
10	0.00009	1.000 0.087	0.403	2.007	0.04a	2.005	10.24	2.243	
	1-d	ivision damage	0.521	2.090 Prot	o i i oa nahility c	f damade	0 522	2.400	
	1- u	wision damage.	0.021	1101		n aamage.	0.022		
1+2	0.02493	1.000 * 0.025	0.546	2.983	0.24f	0.46s	20.31	2.366	
2+3	0.02624	1.000 * 0.026	0.572	3.305	0.57f	1.43s	19.14	1.843	
3+4	0.01459	0.994* 0.015	0.587	3.686	0.95f	2.93s	15.65	1.151	
4+5	0.01233	1.000* 0.012	0.599	3.215	0.46f	1.40s	19.19	1.822	
5+6	0.03667	0.000 * 0.000	0.599	5.080	2.58f	10.50s	4.41	0.067	
6+7	0.06053	0.000 * 0.000	0.599	-7.048	0.42a	179.82s	0.00		
7+8	0.04856	0.584 * 0.028	0.627	3.980	0.91f	11.21s	8.28	0.375	
8+9	0.03390	1.000 * 0.034	0.661	2.926	0.06a	3.52s	17.37	1.882	
9+10	0.04237	0.991* 0.042	0.703	2.649	0.53a	5.43s	15.42	1.589	
10+11	0.06078	0.945 0.057	0.761	2.092	1.24a	6.22s	12.74	1.158	
	2- 0	ivision damage:	0.240	Proc		or damage:	0.301		
1+2+3	0 01295	1 000* 0 013	0 774	3 305	0.57f	1 43s	19 14	1 843	
2+3+4	0.00581	0.947 * 0.006	0.779	4.082	1.40f	4.23s	12.85	0.769	
3+4+5	0.01932	0.994 * 0.019	0.798	3.686	0.95f	2.93s	15.65	1.151	
4+5+6	0.01029	0.000 * 0.000	0.798	5.080	2.58f	10.49s	1.79	0.028	
5+6+7	0.00320	0.000 * 0.000	0.798	-7.026	0.40a	179.78s	0.00		
6+7+8	0.00233	0.000 * 0.000	0.798	-7.004	0.42a	179.56s	0.00		
7+8+9	0.01197	0.000 * 0.000	0.798	4.097	1.00f	14.64s	3.63	0.077	
8+9+10	0.01623	0.864 * 0.014	0.812	2.715	0.63a	8.30s	12.72	1.180	
9+10+11	0.00362	0.000 * 0.000	0.812	-7.324	0.92a	178.95s	0.00		
	3-d	ivision damage:	0.052	Prob	bability o	of damage:	0.086		
1+2+3+4	0.00189	0.947 * 0.002	0.814	4.083	1.40f	4.23s	12.85	0.769	
2+3+4+5	0.00508	0.947 * 0.005	0.819	4.082	1.40f	4.23s	12.85	0.769	
		conti	nued nex	t page					

SUNY Maritime College AMARYLLIS DESIGN - 90M ROPAX FERRY PRELIM DESIGN

Page 19 RUN2

Light-service draft (dl)

Divisions	Р	Smin P*S*V	Α	Depth	Trim	Heel	Range	MaxRA
3+4+5+6	0.01163	0.000 * 0.000	0.819	-5.658	0.82f	178.29s	0.00	
4+5+6+7	0.00073	0.000 * 0.000	0.819	-5.393	0.97f	177.66s	0.00	
5+6+7+8	0.00000	0.000 * 0.000	0.819	-6.961	0.39a	179.48s	0.00	
6+7+8+9	0.00011	0.000 * 0.000	0.819	-7.004	0.42a	179.56s	0.00	
7+8+9+10	0.00437	0.000* 0.000	0.819	-7.075	0.55a	179.35s	0.00	
8+9+10+11	0.00076	0.000* 0.000	0.819	-7.324	0.92a	178.95s	0.00	
	4-d	ivision damage:	0.007	Prob	ability o	of damage:	0.025	
1+2+3+4+5	0.00203	0.947* 0.002	0.821	4.083	1.40f	4.23s	12.85	0.769
2+3+4+5+6	0.00323	0.000* 0.000	0.821	-5.589	0.89f	178.20s	0.00	
3+4+5+6+7	0.00045	0.000 * 0.000	0.821	-5.089	1.23f	177.23s	0.00	
4+5+6+7+8	0.00000	0.000 * 0.000	0.821	-5.122	1.08f	176.82s	0.00	
5+6+7+8+9	0.00000	0.000* 0.000	0.821	-6.961	0.39a	179.48s	0.00	
6+7+8+9+10	0.00000	0.000* 0.000	0.821	-7.001	0.51a	179.17s	0.00	
7+8+9+10+11	0.00000	0.000 * 0.000	0.821	-7.259	0.96a	178.45s	0.00	
	5-d	ivision damage:	0.002	Prob	ability o	of damage:	0.006	
1+2+3+4+5+6	0.00086	0.000 * 0.000	0.821	-5.589	0.89f	178.20s	0.00	
2+3+4+5+6+7	0.00000	0.000 * 0.000	0.821	-4.962	1.35f	177.05s	0.00	
3+4+5+6+7+8	0.00000	0.000 * 0.000	0.821	-4.718	1.41f	176.19s	0.00	
4+5+6+7+8+9	0.00000	0.000 * 0.000	0.821	-5.122	1.08f	176.82s	0.00	
5+6+7+8+9+								
10	0.00000	0.000 * 0.000	0.821	-6.935	0.46a	179.04s	0.00	
6+7+8+9+10+								
11	0.00000	0.000 * 0.000	0.821	-7.154	0.91a	178.13s	0.00	
	6-d	ivision damage:	0.000	Prob	ability o	of damage:	0.001	
		-			-	2		
Attair	ned index i	n this condition:	0.821	Το	tal proba	ability of da	amage:	1.000
Requir	red index:		0.755					
Values	marked wit	th * computed by	macro.					
Distances in MI	ETERS.						Angles	s in deg.

Intermediate draft (dp)

WEIGHT STATUS										
Part	Weight(MT) LCG TCG VCG									
Distances in METERS.	2,232.06 43.440a 0.000 20.000]								
Draft at LCF: 2.975 Draft at mid subdivision length:	2.974									
Condition Graphic - Draft: 2.966	6 @ 0.000 Trim: aft 0.01 deg. Heel	: zero								
Profile View										
	·									
	0 0	5								
The second second second second										
Plan View										
		H								
		1 de la								

Intermediate draft (dp)

Executing DAMSTAB /sdi421P /side:STARBOARD /L:-1.941,90 /B:25.57 /DLL:3 /N:650,0 /macro:PROBSURV

	PROBABILISTIC DAMAGE STABILITY MSC.421(98)								
	Subdivi	Passeng	ger Vess Man	el Version	1 0/1f	00.0002			
	Subulvi	Breadth: 25	570	Draft 2	. 1.9411, 974	90.000a			
		Subdivision	n load line	e draft: 3.	000				
Divisions	Р	Smin P*S*V	Α	Depth	Trim	Heel	Range	MaxRA	
None	0.0000	1.000 0.000	0.000	2.966	0.01a	0.00	22.53	2.689	
1	0.01112	1.000* 0.011	0.011	3.135	0.15f	0.43s	22.16	2.487	
2	0.01502	1.000 * 0.015	0.026	3.135	0.15f	0.43s	22.15	2.487	
3	0.02199	1.000 * 0.022	0.048	3.235	0.251	0.77s	21.81	2.244	
4	0.00385	1.000 * 0.004	0.052	3.379	0.381	1.3/S	20.94	1.960	
5		1.000 0.015	0.007	3.3/9	0.381 0.69f	1.3/8	21.29	1.900	
7	0.000009	1.000 0.087	0.155	3.735	0.001 0.52f	5.205 5.42e	19.07	1.410	
8	0 03069	1 000 * 0 031	0.200	3 076	0.021 0.07a	240s	20 25	2 169	
9	0.02199	1.000 * 0.022	0.318	3.010	0.12a	2.08s	20.53	2.276	
10	0.08659	1.000 * 0.087	0.404	2.792	0.43a	2.77s	19.86	2.318	
11	0.11807	1.000* 0.118	0.522	2.792	0.30a	1.12s	21.34	2.532	
1-division damage: 0.522 Probability of damage: 0.522									
1.0	0.00400	4 000 * 0 005	0 5 4 7	0 405	0 455	0 40	00.45	0 107	
1+2	0.02493	1.000 * 0.025	0.54/	3.135	0.151	0.43s	22.15	2.487	
2+3	0.02624	1.000 * 0.026	0.5/3	3.403	0.4/I	1.305	20.99	1.992	
0+4 1+5	0.01459	1.000 0.013	0.000	3.001	0.041 0.38f	2.015 1.37e	20 04	1.320	
5+6	0.03667	0 772 * 0 028	0.000	5 062	2 16f	8 955	9 94	0.317	
6+7	0.06053	0.000 * 0.000	0.629	-6.901	0.40a	179.69s	0.00	0.011	
7+8	0.04856	0.587 * 0.029	0.657	4.151	0.78f	11.50s	10.00	0.416	
8+9	0.03390	1.000* 0.034	0.691	3.096	0.13a	3.67s	19.05	1.986	
9+10	0.04237	1.000* 0.042	0.733	2.797	0.64a	5.83s	16.92	1.610	
10+11	0.06078	0.851* 0.052	0.785	2.127	1.51a	7.31s	9.09	1.162	
	2-d	ivision damage:	0.263	Prob	pability o	of damage:	0.361		
1+2+3	0 01295	1 000 * 0 013	0 798	3 153	0 47f	1 360	20 99	1 002	
2+3+4	0 00581	0.982 * 0.006	0 804	4 201	1 24 f	3 95s	14 85	0.961	
3+4+5	0.01932	1.000 * 0.019	0.823	3.837	0.84f	2.81s	17.38	1.320	
4+5+6	0.01029	0.000 * 0.000	0.823	5.063	2.17f	8.95s	5.18	0.168	
5+6+7	0.00320	0.000 * 0.000	0.823	-6.838	0.35a	179.59s	0.00		
6+7+8	0.00233	0.000 * 0.000	0.823	-6.837	0.41a	179.33s	0.00		
7+8+9	0.01197	0.000 * 0.000	0.823	4.254	0.82f	14.58s	6.09	0.140	
8+9+10	0.01623	0.770* 0.012	0.836	2.862	0.76a	8.98s	9.92	1.276	
9+10+11	0.00362	0.000 * 0.000	0.836	-7.283	1.09a	178.69s	0.00		
	3-d	ivision damage:	0.050	Prot	Dability C	or damage:	0.086		
1+2+3+4	0.00189	0.982* 0.002	0.837	4.201	1.24f	3.95s	14.85	0.961	
2+3+4+5	0.00508	0.982* 0.005	0.842	4.201	1.24f	3.95s	14.85	0.961	
		conti	nued nex	t page					

SUNY Maritime College AMARYLLIS DESIGN - 90M ROPAX FERRY PRELIM DESIGN

Page 25 RUN2

Intermediate draft (dp)

Divisions	Р	Smin P*S*V	Α	Depth	Trim	Heel	Range	MaxRA
3+4+5+6	0.01163	0.000 * 0.000	0.842	-5.434	0.90f	178.19s	0.00	
4+5+6+7	0.00073	0.000 * 0.000	0.842	-5.103	1.09f	177.45s	0.00	
5+6+7+8	0.00000	0.000 * 0.000	0.842	-6.740	0.33a	179.16s	0.00	
6+7+8+9	0.00011	0.000* 0.000	0.842	-6.838	0.41a	179.33s	0.00	
7+8+9+10	0.00437	0.000 * 0.000	0.842	-6.970	0.62a	179.10s	0.00	
8+9+10+11	0.00076	0.000 * 0.000	0.842	-7.283	1.09a	178.69s	0.00	
	4-d	ivision damage:	0.007	Prob	ability o	of damage:	0.025	
1+2+3+4+5	0.00203	0.982* 0.002	0.844	4.201	1.24f	3.95s	14.85	0.961
2+3+4+5+6	0.00323	0.000* 0.000	0.844	-5.357	0.97f	178.10s	0.00	
3+4+5+6+7	0.00045	0.000* 0.000	0.844	-4.757	1.38f	176.97s	0.00	
4+5+6+7+8	0.00000	0.000* 0.000	0.844	-4.764	1.23f	176.43s	0.00	
5+6+7+8+9	0.00000	0.000* 0.000	0.844	-6.740	0.33a	179.16s	0.00	
6+7+8+9+10	0.00000	0.000 * 0.000	0.844	-6.840	0.54a	178.79s	0.00	
7+8+9+10+11	0.00000	0.000 * 0.000	0.844	-7.192	1.16a	177.96s	0.00	
	5-d	ivision damage:	0.002	Prob	ability o	of damage:	0.006	
1+2+3+4+5+6	0.00086	0.000 * 0.000	0.844	-5.357	0.97f	178.10s	0.00	
2+3+4+5+6+7	0.00000	0.000* 0.000	0.844	-4.616	1.50f	176.79s	0.00	
3+4+5+6+7+8	0.00000	0.000* 0.000	0.844	-4.282	1.61f	175.70s	0.00	
4+5+6+7+8+9	0.00000	0.000* 0.000	0.844	-4.763	1.23f	176.43s	0.00	
5+6+7+8+9+								
10	0.00000	0.000* 0.000	0.844	-6.715	0.45a	178.54s	0.00	
6+7+8+9+10+								
11	0.00000	0.000* 0.000	0.844	-7.020	1.08a	177.45s	0.00	
	6-d	ivision damage:	0.000	Prob	ability o	of damage:	0.001	
• · · · •				_				
Attair	ned index i	n this condition:	0.844	То	tal proba	ability of da	amage:	1.000
Requi	red index:		0.755					
Values	marked wit	th * computed by	macro.				<u> </u>	
Distances in MI	LIERS.						Angles	s in deg.

Page 27 RUN2

Deepest draft (ds)

WE Trim: Fwd 0.2	IGHT STATUS 21 deg Heel: zero
Part WEIGHT	Weight(MT) LCG TCG VCG 2 281 59 42 716a 0 000 25 000
Distances in METERS.	2,201.00 12.1104 0.000 20.000
Draft at LCF: 3.022 Draft at mid subdivision length:	3.039
Condition Graphic - Draft: 3.199	9 @ 0.000 Trim: fwd 0.21 deg. Heel: zero
Profile View	
	0 0 0
Plan View	

Page 30 RUN2

Deepest draft (ds)

Executing DAMSTAB /sdi421P /side:STARBOARD /L:-1.941,90 /B:25.57 /DLL:3 /N:650,0 /macro:PROBSURV

	PROBABILISTIC DAMAGE STABILITY MSC.421(98)								
	Subdivi	Passeng	ger Vess M 1	el Version	1 0/1f	00.0002			
	Subulvi	Breadth: 25	570	Draft 3	039	90.000a			
		Subdivisior	n load line	e draft: 3.	000				
				-					
Divisions	Р	Smin P*S*V	Α	Depth	Trim	Heel	Range	MaxRA	
None	0.00000	1.000 0.000	0.000	3.199	0.21f	0.00	23.54	2.744	
1	0.01112	1.000 * 0.011	0.011	3.381	0.39f	0.45s	23.14	2.538	
2	0.01502	1.000* 0.015	0.026	3.380	0.391	0.45s	23.10	2.538	
3	0.02199	1.000 * 0.022	0.048	3.496	0.501	0.835	22.66	2.282	
4	0.00385	1.000 * 0.004	0.052	3.052	0.64f	1.485	21.39	1.995	
5	0.01451	1.000 0.015	0.007	3.002	0.041 0.07f	1.405	10 02	1.997	
0	0.00009	1.000 0.007	0.100	4.000	0.971 0.76f	5.495 5.45s	19.02	1.409	
8	0.03069	1 000 * 0 031	0.200	3 307	0.701 0.15f	2 385	21 26	2 258	
9	0.02199	1 000 * 0 022	0.200	3 239	0.101 0.09f	2.005	21.20	2.200	
10	0.08659	1.000 * 0.087	0.404	3.017	0.22a	2.68s	20.97	2.434	
11	0.11807	1.000 * 0.118	0.522	3.045	0.05a	0.95s	22.52	2.649	
	1-d	ivision damage:	0.522	Prot	bability o	of damage:	0.522		
1+2	0.02493	1.000 * 0.025	0.547	3.381	0.39f	0.45s	23.10	2.538	
2+3	0.02624	1.000 * 0.026	0.573	3.726	0.73f	1.45s	21.54	2.022	
3+4	0.01459	1.000 * 0.015	0.588	4.153	1.161	3.03s	17.37	1.319	
4+5	0.01233	1.000 * 0.012	0.600	3.652	0.641	1.48s	21.39	1.995	
5+0 6+7	0.03007	$0.772^{\circ} 0.028$	0.629	0.380 6.767	2.501	9.195	10.77	0.379	
0+7 7+8	0.00055	0.000 0.000	0.029	-0.707	0.29a	11 12	11 /7	0 101	
8+0	0.04030	1 000 * 0 034	0.000	3 324	0.901 0.08f	3 629	20 10	2 002	
9+10	0.04237	1 000 * 0 042	0.034	3 021	0.001	5 61s	18 15	1 782	
10+11	0 06078	0 888 * 0 054	0 790	2 423	1 20a	6 66s	9 93	1 500	
	2-d	ivision damage:	0.268	Prot	bability of	of damage:	0.361		
		•			•	•			
1+2+3	0.01295	1.000* 0.013	0.803	3.726	0.73f	1.45s	21.54	2.022	
2+3+4	0.00581	0.979* 0.006	0.809	4.539	1.58f	4.22s	14.67	0.948	
3+4+5	0.01932	1.000 * 0.019	0.828	4.153	1.16f	3.03s	17.37	1.319	
4+5+6	0.01029	0.000 * 0.000	0.828	5.385	2.491	9.19s	4.28	0.112	
5+6+7	0.00320	0.000 ^ 0.000	0.828	-6.6/5	0.21a	179.49s	0.00		
0+7+8	0.00233	0.000 * 0.000	0.828	-0.092	0.29a	179.235	0.00	0 005	
7+0+9 8+0+10	0.01197	0.000 0.000	0.020	4.449	0.971	8 600	10 11	0.233	
9+10+11	0.01023	0.004 0.013	0.041	1 429	0.33a 2.75a	16 34s	0 00	1.402	
0.10.11	3-d	ivision damage:	0.051	Prot	pability of	of damage:	0.086		
	U U								
1+2+3+4	0.00189	0.979* 0.002	0.843	4.539	1.58f	4.22s	14.67	0.948	
2+3+4+5	0.00508	0.979* 0.005	0.848	4.539	1.58f	4.22s	14.67	0.948	
		conti	nued ne>	t page					

Deepest draft (ds)

Divisions	Р	Smin P*S*V	Α	Depth	Trim	Heel	Range	MaxRA
3+4+5+6	0.01163	0.000 * 0.000	0.848	-5.211	1.10f	178.07s	0.00	
4+5+6+7	0.00073	0.000* 0.000	0.848	-4.851	1.30f	177.25s	0.00	
5+6+7+8	0.00000	0.000* 0.000	0.848	-6.561	0.19a	179.01s	0.00	
6+7+8+9	0.00011	0.000* 0.000	0.848	-6.693	0.29a	179.24s	0.00	
7+8+9+10	0.00437	0.000* 0.000	0.848	-6.854	0.52a	179.06s	0.00	
8+9+10+11	0.00076	0.000* 0.000	0.848	-7.162	0.97a	178.72s	0.00	
	4-d	ivision damage:	0.007	Prob	oability o	of damage:	0.025	
1+2+3+1+5	0 00203	0 070 * 0 002	0 850	1 530	1 58f	1 226	14 67	0 0/8
2+3+4+5+6	0.00203	$0.979 \ 0.002$	0.000	-5 124	1.301 1.17f	4.223 177 06s	0 00	0.340
3+4+5+6+7	0.00025	0.000 * 0.000	0.000	-0.124	1.171 1.64f	176 71e	0.00	
4+5+6+7+8	0.00040	0.000 * 0.000	0.000	-4.479	1.041 1.45f	176 15s	0.00	
5+6+7+8+9	0.00000	0.000 * 0.000	0.850	-6 561	0 10a	170.103 170.01s	0.00	
6+7+8+9+10	0.00000	0.000 * 0.000	0.850	-6 690	0.10a 0.42a	178 67s	0.00	
7+8+9+10+11	0.00000	0.000 * 0.000	0.850	-7 063	1 04a	177 955	0 00	
	5-d	ivision damage:	0.002	Prob	ability o	of damage:	0.006	
	• •	go	••••		,	je		
1+2+3+4+5+6	0.00086	0.000 * 0.000	0.850	-5.124	1.17f	177.96s	0.00	
2+3+4+5+6+7	0.00000	0.000 * 0.000	0.850	-4.288	1.78f	176.49s	0.00	
3+4+5+6+7+8	0.00000	0.000 * 0.000	0.850	-3.918	1.90f	175.30s	0.00	
4+5+6+7+8+9	0.00000	0.000 * 0.000	0.850	-4.478	1.46f	176.15s	0.00	
5+6+7+8+9+								
10	0.00000	0.000 * 0.000	0.850	-6.528	0.30a	178.35s	0.00	
6+7+8+9+10+								
11	0.00000	0.000 * 0.000	0.850	-6.859	0.94a	177.34s	0.00	
	6-d	ivision damage:	0.000	Prob	oability o	of damage:	0.001	
A#+=:-	and index :	a this conditions	0 050	τ.		hility of d		1 000
Attained index in this condition:			U.03U	10	ial proba	ability of Ga	amage:	1.000
Valuee	markod wi	th * computed by	U./00					
Distances in MI	TERS		macro.				Anales	s in dea
							Angles	s in ucy.

Appendix H: NavCad Powering Results

Propulsion 9 May 2024 08:27 AM HydroComp NavCad 2020 [Premium]

Project ID Description 90m RoPax Ferry Catamaran Hull Model 5.2.hcnc File name

Analysis parameters

Hull-propulsor interaction		System analysis	
Technique:	[Calc] Prediction	Cavitation criteria:	10% cav line
Prediction:	Holtrop	Analysis type:	Free run
Reference ship:		CPP method:	
Max prop diam:	2250.0 mm	Engine RPM:	
Corrections		Mass multiplier:	
Viscous scale corr:	[On] Custom	RPM constraint:	
Rudder location:	Behind propeller	Limit [RPM/s]:	
Friction line:	ITTC-57	Water properties	
Hull form factor:	1.000	Water type:	Salt
Corr allowance:	0.000363	Density:	1026.00 kg/m3
Roughness [mm]:	[Off] 0.00	Viscosity:	1.18920e-6 m2/s
Ducted prop corr:	[Off]		
Tunnel stern corr:	[Off]		

Prediction method check [Holtrop]

Parameters	FN [design]	CP	LWL/BWL	BWL/T	
Value	0.31	0.71	12.69	2.36	
Range	0.060.80	0.55-0.85	3.90.14.90	2.10-4.00	

Prediction results [System]

		HULL-PR	OPULSOR			ENGINE		FUEL PE	R ENGINE
SPEED	PETOTAL	WET	тир	EEED	RPMENG	PBENG	LOADENG	VOLRATE	MASSRATE
[kt]	[kW]		ТНО	EFFK	[RPM]	[kW]	[% rated]	[L/h]	[t/h]
2.00 !	5.4	0.0804	0.0949	0.9856	268	2.6	0.2		
5.00	90.5	0.0795	0.0949	0.9856	683	38.7	2.7		
9.00	524.6	0.0786	0.0949	0.9856	1228	215.6	15.0		
13.00	1198.6	0.0781	0.0949	0.9856	1656	472.8	32.8		
15.00	1807.2	0.0779	0.0949	0.9856	1902	709.9	49.3		
17.00	2587.1	0.0778	0.0949	0.9856	2148	1012.8	70.3		
+ 18.00 +	3047.3	0.0777	0.0949	0.9856	2270	1191.2	82.7		
19.00	3557.4	0.0776	0.0949	0.9856	2392	1388.9	96.4		
20.00	4119.7	0.0776	0.0949	0.9856	2514	1607.2	111.6		
21.00	4736.6	0.0775	0.0949	0.9856	2636	1846.8	128.2		
	CO2		EFFICIENCY		THR	UST			
SPEED	CO2ENG	FFFO	EEEOA	MERIT	THRPROP	DELTHR			
[kt]	[t/h]	LITO	LITOA		[kN]	[kN]			
2.00 !		0.6705	0.6309	0.42053	1.44	5.20			
5.00		0.6756	0.6350	0.44041	9.72	35.19			
9.00		0.6764	0.6352	0.43914	31.30	113.30			
13.00		0.7003	0.6573	0.39568	49.50	179.22			
15.00		0.7016	0.6584	0.39268	64.69	234.20			
17.00		0.7028	0.6594	0.38999	81.71	295.82			
+ 18.00 +		0.7033	0.6598	0.38873	90.90	329.07			
19.00		0.7038	0.6602	0.38754	100.53	363.95			
20.00		0.7043	0.6606	0.3864	110.60	400.40			
21.00		0.7048	0.6610	0.3853	121.11	438.44			
				POWER D	DELIVERY				
SPEED	RPMPROP	QPROP	QENG	PDPROP	PSPROP	PSTOTAL	PBTOTAL	TRANCO	
[kt]	[RPM]	[kN⋅m]	[kN⋅m]	[kW]	[kW]	[kW]	[kW]	TRANSF	
2.00 !	35	0.56	0.09	2.1	2.1	8.5	10.5		
5.00	88	3.68	0.54	34.6	35.6	142.5	154.7	367.9	
9.00	159	11.87	1.68	200.3	206.5	825.9	862.6	118.8	
13.00	214	19.44	2.73	442.2	455.9	1823.6	1891.3	78.2	
15.00	246	25.46	3.56	665.6	686.2	2744.9	2839.4	60.1	
17.00	278	32.24	4.50	951.5	980.9	3923.6	4051.2	47.8	
+ 18.00 +	294	35.90	5.01	1119.9	1154.5	4618.2	4764.8	43.0	
19.00	309	39.74	5.54	1306.6	1347.0	5388.0	5555.4	38.9	
20.00	325	43.77	6.10	1512.2	1559.0	6235.8	6428.7	35.4	
21.00	341	47.97	6.69	1737.6	1791.4	7165.6	7387.2	32.4	

Report ID20240509-0827

HydroComp NavCad 2020 [Premium] 20.01.0086.9013.CF-AP-PW

Propulsion 9 May 2024 08:27 AM HydroComp NavCad 2020 [Premium]

Prediction results [Propulsor]

Project ID Description 90m RoPax Ferry File name Catamaran Hull Model 5.2.hcnc

	CAVITATION								
SPEED [kt]	SIGMAV	SIGMAN	SIGMA07R	TIPSPEED [m/s]	MINBAR	PRESS [kPa]	CAVAVG [%]	CAVMAX [%]	PITCHFC [mm]
2.00 !	257.49	136.74	25.48	4.08	0.071	0.78	2.0	2.0	1915.7
5.00	41.11	21.01	3.93	10.41	0.144	5.31	2.0	2.0	1897.8
9.00	12.67	6.50	1.21	18.71	0.231	17.09	2.0	2.0	1899.9
13.00	6.06	3.57	0.66	25.23	0.269	27.03	2.2	2.2	1969.3
15.00	4.55	2.71	0.50	28.99	0.314	35.33	3.4	3.4	1974.0
17.00	3.54	2.12	0.39	32.73	0.365	44.62	5.3	5.3	1978.2
+ 18.00 +	3.16	1.90	0.35	34.59	0.395	49.64	6.6	6.6	1980.2
19.00	2.84	1.71	0.31	36.45	0.426	54.90	8.1	8.1	1982.0
20.00	2.56	1.55	0.28	38.31	0.461	60.40	10.1 !	10.1	1983.8
21.00	2.32	1.41	0.26	40.16	0.499	66.14 !	12.4 !!	12.4	1985.5
				PROPULSO	DR COEFS				
SPEED [kt]	J	KT	KQ	KT/J2	KQ/J3	СТН	СР	RNPROP	
2.00 !	0.7287	0.1641	0.02839	0.30899	0.07335	0.78684	1.1908	1.51e6	
5.00	0.7148	0.1705	0.02872	0.33379	0.078639	0.85	1.2766	3.84e6	
9.00	0.7163	0.1699	0.02863	0.33107	0.077903	0.84307	1.2647	6.90e6	
13.00	0.7678	0.1478	0.02579	0.25073	0.056984	0.63848	0.92507	9.36e6	
15.00	0.7712	0.1463	0.02559	0.246	0.055801	0.62644	0.90588	1.08e7	
17.00	0.7742	0.1450	0.02542	0.24184	0.054765	0.61583	0.88906	1.22e7	
+ 18.00 +	0.7757	0.1444	0.02534	0.23992	0.05429	0.61095	0.88135	1.29e7	
19.00	0.7770	0.1438	0.02526	0.23812	0.053844	0.60636	0.8741	1.35e7	
20.00	0.7783	0.1432	0.02519	0.23639	0.053418	0.60197	0.86719	1.42e7	
21.00	0.7795	0.1427	0.02511	0.23475	0.053014	0.5978	0.86063	1.49e7	

Report ID20240509-0827

HydroComp NavCad 2020 [Premium] 20.01.0086.9013.CF-AP-PW

Project ID Description 90m RoPax Ferry Catamaran Hull Model 5.2.hcnc File name

Hull data [Total for catamaran: Displ 2256.32 t; WidthOA 25.393 m]

General		(per demi-hull)	Planing	(per demi-hull)
Configuration:		Catamaran	Proj chine length:	0.000 m
Chine type:		Round/multiple	Proj bottom area:	0.000 m2
Length on WL:		89.937 m	LCG fwd TR:	[XCG/LP 0.000] 0.000 m
Max beam on WL:	[LWL/BWL 12.693]	7.085 m	VCG below WL:	0.000 m
Max molded draft:	[BWL/T 2.362]	3.000 m	Aft station (fwd TR):	0.000 m
Displacement:	[CB 0.575]	1128.16 t	Deadrise:	0.00 deg
Wetted surface:	[CS 5.247]	1650.041 m2	Chine beam:	0.000 m
Keel-to-keel spacing:	[S/LWL 0.204]	18.308 m	Chine ht below WL:	0.000 m
ITTC-78 (CT)		(per demi-hull)	Fwd station (fwd TR):	0.000 m
LCB fwd TR:	[XCB/LWL 0.520]	46.776 m	Deadrise:	0.00 deg
LCF fwd TR:	[XCF/LWL 0.450]	40.491 m	Chine beam:	0.000 m
Max section area:	[CX 0.804]	17.100 m2	Chine ht below WL:	0.000 m
Waterplane area:	[CWP 0.831]	529.465 m2	Propulsor type:	Propeller
Bulb section area:		1.700 m2	Max prop diameter:	2250.0 mm
Bulb ctr below WL:		1.300 m	Shaft angle to WL:	0.00 deg
Bulb nose fwd TR:		91.942 m	Position fwd TR:	0.000 m
Imm transom area:	[ATR/AX 0.000]	0.000 m2	Position below WL:	0.000 m
Transom beam WL:	[BTR/BWL 0.000]	0.000 m	Transom lift device:	Flap
Transom immersion:	[TTR/T 0.000]	0.000 m	Device count:	0
Half entrance angle:		9.00 deg	Span:	0.000 m
Bow shape factor:	[BTK flow]	-1.0	Chord length:	0.000 m
Stern shape factor:	[EX flat]	-2.0	Deflection angle:	0.00 deg
			Tow point fwd TR:	0.000 m
			Tow point below WL:	0.000 m
			Foil assist (planing)	(total)
			Foil count:	0
			Total planform area:	0.000 m2
			LCE fwd TR:	0.000 m
			VCE below WL:	0.000 m
			Lift-drag ratio:	0.0
			Lift fraction (design):	0.00
			Design speed:	0.00 kt

Propulsor data

Propulsor			Propeller options	
Count:	2		Oblique angle corr:	Off
Propulsor type:	Propeller series		Shaft angle to WL:	0.00 deg
Propeller type:	FPP		Added rise of run:	0.00 deg
Propeller series:	B Series		Propeller cup:	0.0 mm
Propeller sizing:	By power		KTKQ corrections:	Standard
Reference prop:			Scale correction:	Full ITTC
Blade count:	4		KT multiplier:	1.000
Expanded area ratio:	0.4605	[Size]	KQ multiplier:	1.000
Propeller diameter:	2250.0 mm	[Keep]	Blade T/C [0.7R]:	Standard
Propeller mean pitch: [P/D	0.9875] 2221.8 mm	[Size]	Roughness:	Standard
Hub immersion:	1850.0 mm		Cav breakdown:	Off
Engine/gear			Design condition [By power]	
Drive line:	Standard		Max prop diam:	2250.0 mm
Gear input:	Single engine		Design speed:	18.00 kt
Engine data:	Generic diesel		Reference power:	1440.0 kW
Rated RPM:	2250 RPM		Design point:	1.000
Rated power:	1440.0 kW		Reference RPM:	2250.0 RPM
Primary fuel:	MGO		Design point:	1.050
Secondary fuel:	None			
Gear efficiency:	0.970			
Load correction:	On			
Gear ratio:	7.732	[Size]		
Shaft efficiency:	0.970			
Report ID20240509-0827			HydroComp N	avCad 2020 [Premium] 20.01.0086.9013.CF-AP-PW

HydroComp NavCad 2020 [Premium] 20.01.0086.9013.CF-AP-PW

Appendix I: Owner's Requirements
OWNER'S REQUIREMENTS FOR A ROPAX FERRY

Introduction

A ferry operator in the Puget Sound intends to replace an aging Ro-Pax ferry with a more modern and fuel-efficient version. The ferry will have capacity for 100 four wheeled vehicles and 650 passengers. Due to the limited trip length, no staterooms are required. The maximum operational speed is 20 kts.

Ferry Route

From Port Angeles, WA to Victoria, British Columbia.

A one-way trip along this route is approximately 20 NM. At a service speed of 20 kts, this will result in a one-way trip length of approximately one hour, not including cargo loading and unloading times.

The vessel will run a maximum of eight one-way trips per day during the summer and four one-way trips per day during the winter. At each stop, the vessel will either fully load or unload all cargo.

Vehicle and Passenger Cargo

The vehicle deck will be capable of supporting 100 four-wheeled cars, SUVs, and light trucks. Assuming an average vehicle length of five meters, the ferry's main deck will therefore have 500 lane-meters of vehicle space.

There will be structural capacity for loading and transporting a limited number of straight and/or articulated heavy trucks. Heavy trucks will replace space occupied by four-wheeled vehicles—heavy trucks will not be carried in addition to the 100 four-wheeled vehicles.

Seating will be provided for 650 passengers on the main deck with provision for food and beverage service. No passenger cabins are necessary, given the length of route.

Loading and Discharging

Passengers and vehicles (cars and trucks) will be loaded via roll-on/roll-off ramps at the stern of the vessel. Vehicles will be driven or towed onto the ferry. Passengers will arrive in vehicles or on foot. No other cargo is to be carried.

Limiting Particulars

LOA: Minimum length based on vehicle deck area requirements. Beam: Minimum beam to accommodate sufficient lanes on the vehicle deck. Draft: Consideration for depth of harbor at ferry dock Air Draft: Consideration for bridges and other air draft restrictions Tonnage: Minimize to reduce draft, wetted surface area, crewing, and resistance.

<u>Speed, Range, DWT</u> Trial Speed at design draft – 20 knots Range – In excess of 1250 NM (allows for refueling once per week).

<u>Classification</u> American Bureau of Shipping (ABS) classification

<u>Registry</u> USA or Canada

Complement

Minimum crew necessary to comply with registry, operational, and regulatory requirements.

Special Design Considerations

- Ro-ro ramp design restrictions due to the configuration of the ferry docks in Port Angeles and Victoria.
- Selection of propulsion plant and generators to minimize carbon emissions for EEDI compliance.
- Waste heat recovery system to supply HVAC energy.
- Structural capacity for vehicle loading on Main deck
- Maneuverability for docking without the aid of tugs.
- Does not need to be Jones Act compliant as route crosses an international border.
- Capacity for electric car charging.
- Fire suppression system suitable for lithium battery fires.
- Open deck for trucks carrying hazardous cargos.
- Utilization of commonly available fuel.

Applicable Regulations

- Canadian Transportation Agency's Ferry Accessibility for Persons with Disability Code of Practice
- International Convention for the Prevention of Pollution from Ships (MARPOL)
- International Convention for the Safety of Life at Sea (SOLAS)
- International Load Line Convention (LLC)
- International Maritime Dangerous Goods (IMDG) Code
- International Maritime Organization (IMO)
- Transport Canada (TC)
- United States Coast Guard (USCG)