

Windfarm SOV: The Pathway to a Fully Decarbonized Vessel

Presented by: Shanna Hawkins

Pathway to a Fully Decarbonized Vessel

Windfarm Service Operations Vessel (SOV)

SOV Baseline Design

Zero Emissions SOV Design

Batteries as Decarbonized Solution

Environmental Impact on Operability

Operational Profile: 14-day Cycle

Operational Profile: 14-day Cycle

In-Field Charging Concepts

Courtesy of Vard Design AS 2021

Offshore Substation

Courtesy of Vard Design AS 2021

Wind Turbine Generator

Courtesy of Vard Design AS 2021

Charging Buoy

In-Field Charging

		Battery Mode	
Operational Mode	Profile	Baseline	IFC Stations Added (Ph.2-5)
Port	2%	Charging	Charging
Inner Passage Transit (5 kts)	1%	Discharging	Discharging
Transit to/from Wind Park (10 kts)	2%	Spinning Reserve	Discharging/SR
Transit In Windfarm	36%	Spinning Reserve	Discharging/SR
Day Standby	17%	Spinning Reserve	Charging
DP Operations	14%	Spinning Reserve	Discharging/SR
Night Standby	29%	Spinning Reserve	Charging

Phased Approach

Phase 1: 1 500 kWh (Baseline Design)

Phase 2: 7 000 kWh

Phase 3: 15 000 kWh

Phase 4: 22 000 kWh

Phase 5: 25 000 kWh (Fully Electric)

Power Source and Emissions per Phase

Clean Energy Usage vs Battery Cost

Conclusions

- Impractical to achieve the same level of operability as a hybrid vessel with batteries alone
- Diminishing returns on emissions reduction/kwh installed as you approach full electric operation
- Batteries significantly reduce fuel consumption and emissions
- External factors influence decarbonization

Thank you for your attention. This concludes the presentation.

Questions?

