

Evaluating Surface Preparation for Maintenance Recoating: Testing Waterjetting, Salts, Inhibitors

Presented by: Alex Petkas, PhD., HoldTight Solutions, Inc.

Testing Goals

- Assess methods for maintenance recoating in offshore environments
- Assess long-term (5 year) performance of UHP, Dry Grit Blasting
- Assess impact of Decontamination Chemical (DC) (or "inhibitor") used in surface preparation
- Provide basis for evaluating ISO 12944-9 standard

Preparing the Panels (2015)

- 6 panels
- Panels all first Dry blasted to NACE 1/SSPC SP5 (white metal blast)
- 3.1-3.9 mil profile (garnet)
- Panels subjected to 2 week prerusting procedure in order to simulate offshore coating failure situation typical in maintenance recoating
- Panels then re-prepared according to table in following slide
- (Procedure is detailed in 2017 NACE paper)

Panel preparation table

Sample #	Surface Preparation	Coating
1-1	38,000psi Waterjet + decontamination chemical (DC)	Glass flake Epoxy
2-1*	38,000psi Waterjet	Glass flake Epoxy
3-1	38,000psi Waterjet + DC + Seawater Mist	Glass flake Epoxy
4-1	Dry Garnet Blast + Power wash w/ DC	Glass flake Epoxy
5-1*	Dry Garnet Blast + Power wash	Glass flake Epoxy
6-1	Dry Garnet Blast + Power wash, DC , + Seawater Mist	Glass flake Epoxy

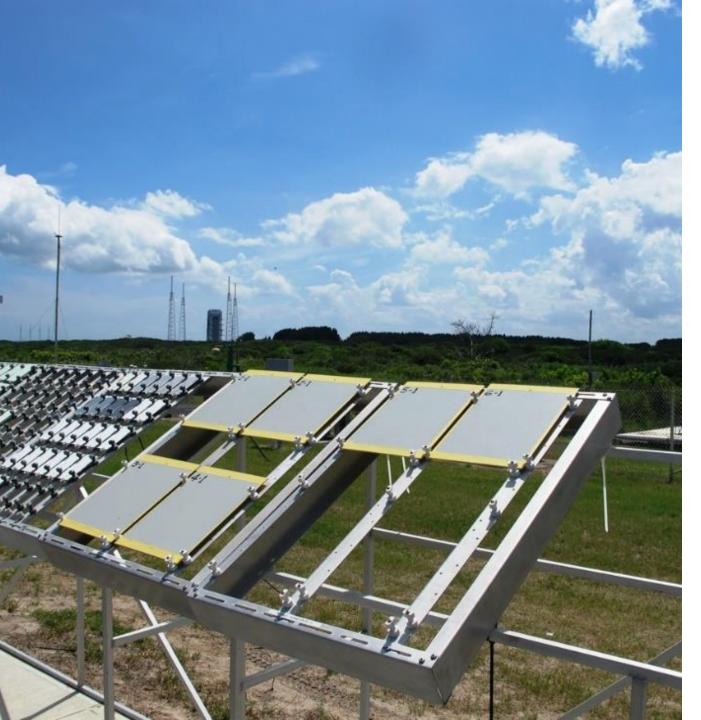
Decontamination Chemical

- Decontamination chemical was used in a LP pressure wash (approximately 3000 PSI) after initial UHP / Dry blasting on panels 1-1, 3-1, 4-1, 6-1
- Decontamination Chemical is a relatively established industry product used to control flash rust (rust bloom) and remove excess soluble salts.
- Decontamination chemical diluted 50:1 to yield a 2% solution in LP pressure wash water

75 mm X 150 mm panels Ready for ISO 20340 Testing

Prepared panel

- Each of the original 6 panels cut down according to the diagram
- <u>Large piece</u> submitted to 5-year exposure
- 3 smaller pieces submitted to shorter term ISO-20340 Testing
 - (ISO-20340 = updated as ISO-12944-9)
- This presentation details testing procedure performed on Large piece


Exposing the panels

- ASTM G50 used for long term field exposure test
- Racks are 150 ft from high tide line

NASA BEACHSIDE CORROSION TESTING FACILITY KENNEDY SPACE CENTER

KENNEDY SPACE CENTER, FLORIDA

Exposing the panels for 5 years

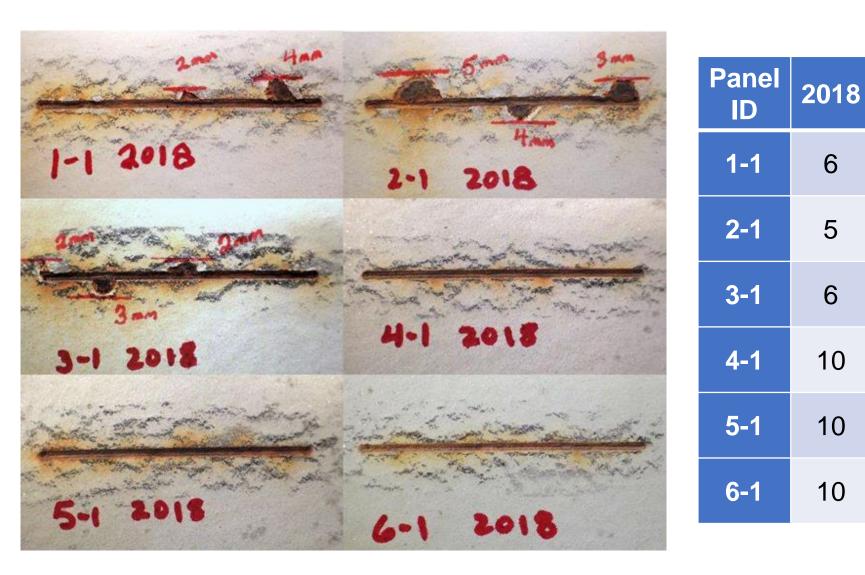
- Rack designed according to ASTM G50
- Scribe test performed at regular intervals (ASTM D1654)
- Adhesion Pull test performed at regular intervals (ASTM D4541)

PANELS DEPICTED AS INSTALLED AT

NASA BEACHSIDE CORROSION TESTING FACILITY

Scribe Test Detail

- Scribe test readings were taken in 2018-2021 in February.
- Readings were taken 12 months after each scribe was performed
- In order to make the initial scribe, panels were removed from rack and cleaned with solvent, then scribed with 1/16" carbide tipped ball mill
- Panels were then reinstalled to continue long term test


Scribe Results RESULTS

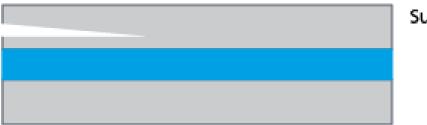
Scribe RatingsPanel ID2018201920202021Decontaminatio n Chemical (DC)1.16101010DC Uland				ating	S	Representative N	lean Creepage fro	om Scribe
	2018				Decontaminatio	Millimeters	Inches (Approximate)	Rating
ID					(DC)	Zero	0	10
	4.0	4.0	10	· · · ·	Over 0 to 0.5	0 to 1/64	9	
1-1	6	10	10	10	DC Used	Over 0.5 to 1.0	1/64 to 1/32	8
2-1	5	10	10	10	Without DC	Over 1.0 to 2.0	1/32 to 1/16	7
						Over 2.0 to 3.0	1/16 to 1/8	6
3-1	6	10	10	10	DC Used	Over 3.0 to 5.0	1/8 to 3/16	5
4-1	4-1 10	10 10	10	10	DC Used	Over 5.0 to 7.0	3/16 to 1/4	4
4-1 10		10	DC USEU	Over 7.0 to 10.0	1/4 to 3/8	3		
5-1	10	10	10	10	Without DC	Over 10.0 to 13.0	3/8 to 1/2	2
						Over 13.0 to 16.0	1/2 to 5/8	1
6-1	10	10	10	10	DC Used	Over 16.0 to more	5/8 to more	0

Scribe Test Sample Close-up

- 2018 scribe depicted here at time of testing
- (1 year after initial scribe made)

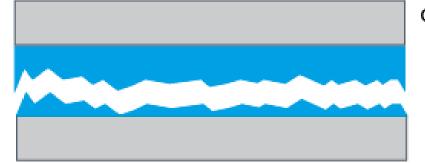
Adhesion Pull-off Test Detail

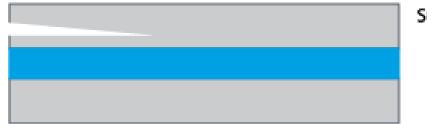
- Four Adhesion pull-off tests made per panel in successive years (2018-2021)
- Locations selected at least 3 inches from any scribe test site
- All failures were deemed cohesive
- Some failures 100% cohesive
- Others 95% cohesive, 5% adhesive
 - This is Within tolerance of the test
- Variation from year to year was within the tolerance of the test (not statistically significant)


Adhesive vs. Cohesive Failure

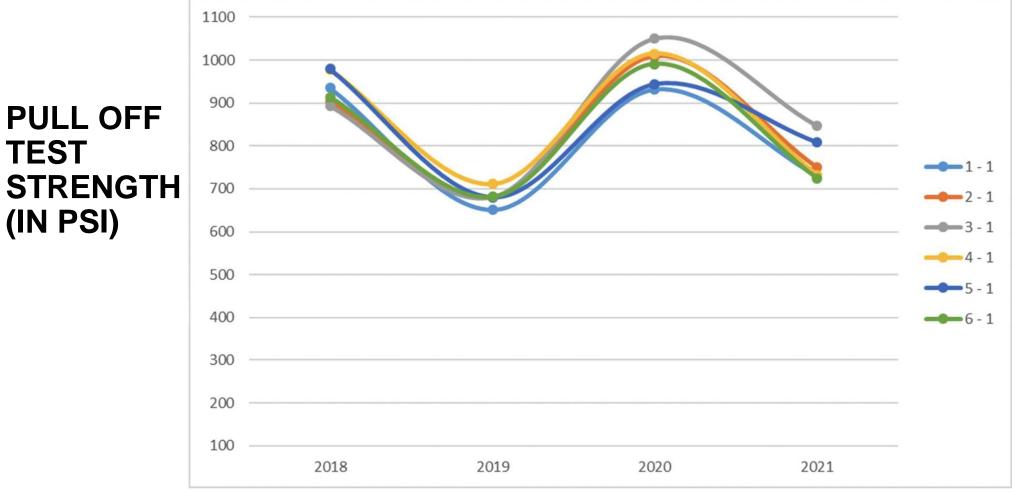
- All failures were deemed Cohesive, i.e.:
- Failure point was internal tensile strength of coating rather than strength of adhesion to substrate

Cohesive failure


Substrate failure


Adhesive vs. Cohesive Failure

- All failures deemed Cohesive, i.e.:
- Failure point was internal tensile strength of coating rather than strength of adhesion to substrate


Cohesive failure

Substrate failure

SUMMARY GRAPH OF ADHESION TEST RESULTS

YEAR

SAMPLE TABLE OF ANNUAL ADHESION RESULTS

- Results from 2019
 shown
- Full results available upon request or in published article

Table 5. 2019 Adhesion Data

Panel	POTS (psi)	POTS (kPa)	Failure Mode	Average POTS (psi)	Average POTS (kPa)	Percent Difference
1-1	649	4476	95%	651	4487	9
	647	4462	Cohesive/5%			
	684	4719	Adhesion Failure			
	622	4291	Adhesion Fallule			
2 - 1	666	4590		681	4697	12
	651	4491	100% Cohesive			
	676	4662	Failure			
	732	5046				
	713	4918	100% Cohesive Failure	681	4697	8
3 - 1	658	4533				
	678	4676				
	676	4662				
4 - 1	682	4704	100% Cohesive	711	4900	6
	715	4932				
	719	4961	Failure			
	726	5003				
5 - <mark>1</mark>	715	4932	050/	680	4690	14
	643	4434	95% Cohesive/5%			
	728	5018				
	635	4377	Adhesion Failure			
6 - 1	618	4263	95%	682	4701	15
	691	4761				
	717	4946	Cohesive/5%			
	701	4832	Adhesion Failure			

Some Conclusions

- Adhesion tests did not show any statistically significant pattern among the various surface preparation methods. All failures were deemed cohesive.
- The panels subjected to UHP surface preparation method exhibited more corrosion undercreep on the scribe test. UHP panel treated with DC (decontamination chemical) suggested increased resistance to undercreep.
- The results of this ASTM G 50⁴ 5-year long-term test should be compared with the short-term ISO 20340¹ testing. (ISO 20340¹ has been updated with ISO 12944-9⁷)

Acknowledgements

We wish to express our thanks to Jerome Curran of NASA BCTS, who oversaw the 5-year field test, as well as to Halina Wisniewski for her oversight of the initial panel preparation procedure and the performance testing per ISO 2034

Thank you for your attention this concludes the presentation

Questions?

