Resilience of Low- and Non-iceclass Vessels in Ice

SNAME SMC September 2022

Bruce Quinton, PhD, P.Eng. Associate Professor, Dept. Head (Acting) Department of Ocean & Naval Architectural Engineering Memorial University of Newfoundland

www.mun.ca

OCEAN & NAVAL ARCHITECTURAL ENGINEERING

Arctic Engineering:

- Ice class ships and offshore structures
- Effects of ice in marine environment
- Effects of polar environment

Why go to the Arctic?

- Trade routes
- Tourism
- Sovereignty and national security
- Science
- Resources

ICE – DIFFICULT TO CHARACTERIZE USUALLY DEFINES THE DESIGN LOAD

RESEARCH OVERVIEW

Research Partners:

- Defence Research & Development Canada (DRDC), VARD Marine Inc., American Bureau of Shipping (ABS)

Project Duration and Funding: 6 years (2018-2024) – \$1M

Selected Project Goals:

- Development and validation of software tools for assessing response of non- and low-ice-class vessel hulls to ice loads
- Advanced material behaviour and fracture characterisation of aged and new steels
- Incorporation of moving load effects in hull assessment tools

Why?

- To support Canadian and NATO activities in the Polar regions
 - Search and rescue
 - Sovereignty and national security
 - Extreme emergency/critical scenarios

EXPERIMENTS, MODELS, TOOLS

Large Pendulum Apparatus:

- Left side: ice feature or a rigid indenter
- Right side: full-scale stiffened panel or a plate
- Up to 8.8 m/s closing speed (generating up to ~92 kJ)
 Full-scale Structure
- 80" Wide x 53.5" Tall
- Three 7"x4" x 8.60lbT frames

EXPERIMENTS, MODELS, TOOLS

AGED AND NEW MATERIALS CHARACTERIZATION

Sample 3

Sample 1

4D (ICE) PRESSURE METHOD (4DPM)

EXPERIMENTS, MODELS,

TOOLS – GEM

pack ice force trace net X force from impacts - very rapid load spikes

Save

			reem	bescription	unica
	lce impacts on ve	essel			
	(and kacoved for avary improved)		1	time	(h:mm)
	(one record for e	very impact)	2	vessel_position_x	(m)
L			3	vessel_position_y	(m)
			4	vessel_orientation	(deg)
			5	vessel_velocity_x	(m/sec)
			6	vessel_velocity_y	(m/sec)
			7	V_surge	(m/sec)
	ime history of vessel			V_sway	(m/sec)
Time				vessel_omega	(deg/sec)
iiiic				ice_centroid_x	(m)
one i	record for every ti	mestep)	11	ice_centroid_y	(m)
	7 7		12	ice_orientation	(deg)
ltem	Description	units	13	ice_velocity_x	(m/sec)
			14	ice_velocity_y	(m/sec)
1	time	(h:mm)	15	ice_omega	(deg/sec)
2	vessel_position_x	(m)	16	vessel_beta0	(deg)
3	vessel_position_y	(m)	17	vessel_beta1	(deg)
4	vessel orientation	(deg)	18	ice_wedge_angle	(deg)
5	vessel velocity x	(m/sec)	19	hull_wedge_angle	(deg)
6	vessel velocity v	(m/sec)	20	impact2D_direction_x	-
7	V surre	(m/sec)	21	impact2D_direction_y	-
,	V_suige		22	impact2D_location_x	(m)
	v_sway	(m/sec)	23	impact2D_location_y	(m)
9	vessel_omega	(deg/sec)	24	norm_vel_ship2D	(m/sec)
10	hydrodynamic_force_x	(N)	25	norm_vel_ice2D	(m/sec)
11	hydrodynamic_force_y	(N)	26	norm_vel2D	(m/sec)
12	hydrodynamic_force_N	(Nm)	27	tan_vel2D	(m/sec)
13	ice_force_x	(N)	28	eff_mass_vessel2D	(kg)
14	ice_force_y	(N)	29	eff_mass_ice2D	(Kg)
15	ice force N	(Nm)	30	eff_mass_comb2D	(kg)
16	mooring force x	(N)	31	impulse2D_x	(N-S)
17	mooring force v	(N)	32	Impulse2D_y	(N-S)
18	mooring_force_N	(Nm)	33	norm_vel3D	(m/sec)
10	propeller force x	(NII)	34	eff_mass_vessel3D	(kg)
19	propeller_force_x	(N)	35	eff_mass_ice3D	(Kg)
20	propeller_force_y	(N)	36	eff_mass_comb3D	(Kg)
21	propeller_force_N	(Nm)	3/	ice_thickness	(m)
22	rudder_force_x	(N)	38	ice_Po	(MPa)
23	rudder_force_y	(N)	39	ice_sr	(MPa)
24	rudder_force_N	(Nm)	40	Iceoal flow limit	(#)
25	engine_power(kW)	(kW)	41	flex_limit	(IN)
26	prop#1 thrust	(N)	42	ice_mass	(Kg)
27	prop#1 torque	(Nm)	43	ctrucutro id	-
28	prop#1 spin speed	(RPM)	44	strucutre_ia	-
20	prop#1_power	(k)()	45	null_la	-
20	rudd#1_apgle	(deg)	40	fa 3D	(N)
30	rudo#1_angle	(deg)	4/	Ia_3U	
			48	NorPen3D	m
			49	contact type	
			50	contact type	-

Item

Description

units

OCEAN & NAVAL ARCHITECTURAL ENGINEERING

THANK YOU

